North Campus Student Housing - McCarty Hall
University of Washington
Seattle, King County, Washington

January 15, 2016 UW Project No. 204350 Terracon Project No. BA158014

Prepared for:

University of Washington Seattle, Washington

Prepared by:

Terracon Consultants, Inc. Mountlake Terrace, Washington

Offices Nationwide Employee-Owned Established in 1965 terracon.com

University of Washington Capital Projects Office Box 352205 Seattle, WA 98195-2205

Attn: Mr. Shane Ruegamer

Re: PCBs Concrete and Soil Sampling Cleanup Verification Work Plan and Sampling

and Analytical Plan

North Campus Student Housing - McCarty Hall

University of Washington

Seattle, King County, Washington

UW Project No. 204350

Terracon Project No. BA158014

Terracon Consultants, Inc. is pleased to submit this Cleanup Verification Work Plan and Sampling and Analytical Plan for the Polychlorinated Biphenyls (PCBs) Concrete and Soil Sampling activities proposed within the basement level transformer room portions of the north, south, and central towers of McCarty Hall at the above referenced site.

We appreciate the opportunity to perform these services for the University of Washington. Please contact the undersigned if you have questions regarding the information provided in the work plan and sampling and analysis plan.

Sincerely,

Terracon Consultants, Inc.

Chad Kean, CIH, CHMM, CPSWQ

Project Manager II

Michael D. Noll, LG, LHG

Senior Project Manager

Construction Materials

Geotechnical

TABLE OF CONTENTS

Page No.

1.0	INTRODUCTION1
1.1	Site Vicinity Description1
1.2	Summary of Previous Work1
1.3	Standard of Care3
1.4	Reliance4
2.0	INVESTIGATION OBJECTIVES4
2.1	Project Objectives4
2.2	Data Quality Objectives4
2.3	Regulatory Standards/Guidelines5
3.0	PHYSICAL SETTING5
3.1	Site Geology and Hydrogeology5
4.0	CONCRETE AND SOIL SAMPLING STRATEGY AND RATIONALE5
4.1	Concrete Sampling6
4.2	Soil Sampling6
5.0	FIELD METHODS AND SAMPLING PROCEDURES7
5.1	Pre-mobilization Activities
5.2	Pre-Construction Meeting7
5.3	Health and Safety7
5.4	Sampling Activities8
5.5	Decontamination Procedures8
5.6	Sample Handling Procedures
5.7	Sample Documentation
5.8	Investigation Derived Waste10
6.0	ANALYTICAL STRATEGY11
6.1	Analytical Methods11
6.2	Sample Containers, Preservatives, and Holding Times11
6.3	Field Quality Control Samples11
7.0	ANALYTICAL QUALITY CONTROL PROCEDURES12
7.1	Qualifications of Analytical Laboratory12
7.2	
7.2	Laboratory Quality Control Procedures

APPENDICES

Appendix A

Exhibit 1 Site Location Map

Exhibit 2 PCB Cleanup Verification Sampling Plan

Appendix B

Terracon - PCBs Concrete and Soil Sampling Investigation Report - January 12, 2016

Appendix C

Terracon – PCB Soil and Concrete Remediation Specification, Section 02 84 50, Addendum 3 - December 10, 2015

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 15, 2016 ■ Terracon Project No. BA158014

1.0 Introduction

On behalf of the University of Washington, Terracon Consultants, Inc. (Terracon) has prepared this Polychlorinated Biphenyls (PCBs) Cleanup Verification Concrete and Soil Sampling Work Plan and Sampling and Analytical Plan (SAP), to be implemented during the removal of concrete and/or soil containing PCBs above regulatory levels at the site.

1.1 Site Vicinity Description

The site is located in the North portion of the University of Washington (UW) campus. McCarty Hall is comprised of a north, south and central tower. The site is bounded to the north by Northeast 45th Street and to the east, south, and west by additional University of Washington facilities. The location of the site is illustrated in Exhibit 1.

1.2 Summary of Previous Work

Dames & Moore completed a Closure Report PCB Remediation at the site in June 1997. As part of an initial investigation, site characterization was conducted in the transformer rooms between November 1994 and March 1995 to determine the nature and extent of PCB contaminated material resulting from transformer oil leaks or spills. The results of the site characterization indicated that PCBs were present in all three transformer rooms at McCarty Hall at concentrations exceeding regulatory action levels under the Toxics Substance Control Act (TSCA). Please refer to the Dames & Moore report included as part of Appendix B for further information regarding the 1994-1995 site characterization and remedial activities.

Dames & Moore conducted remedial activities in the north, south, and central tower transformer rooms in McCarty Hall between July and December 1996. Remedial activities included removal, disposal and/or replacement of the transformers and electrical appurtenances containing PCBs; washing and rinsing of PCB contaminated concrete surfaces; scabbling and encapsulating of the washed PCB contaminated concrete surfaces; removal of selected PCB contaminated concrete slabs and underlying soils; confirmatory sampling and analysis during and following removal or decontamination activities; and waste disposal.

In the north tower transformer room, remedial activities included decontamination of concrete surfaces by washing and rinsing, scabbling, encapsulation, and removal of selected concrete slabs and underlying soils. During the initial investigation, five core samples were collected from the concrete floor. One core sample contained 390 milligrams per kilogram (mg/kg, approximately equivalent to parts per million [ppm]) of PCBs. The concrete floor slabs located in the northeast corner and south-central portion of the electrical room were removed and replaced. Following the concrete floor slab removal, one soil sample collected at

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 15, 2016 ■ Terracon Project No. BA158014

approximately seven inches below ground surface (bgs) contained 1.6 ppm PCBs. A total of four wipe sample were collected prior to the slab removal and, based on the wipe sample results (PCBs concentrations ranged from 7 to 470 micrograms per 100 square centimeters [μ g/100cm²]), portions of the floor slab were either removed or encapsulated. In addition, in the non-encapsulated areas, the floors were washed and rinsed and an additional four wipe samples were collected. Based on the results of the final wipe samples (the results ranged from less than 1 μ g/100 cm² to 35 μ g/100 cm²), no further remedial action was completed in those areas.

In the south tower transformer room, remedial activities included decontamination of concrete surfaces by washing and rinsing, scabbling, and encapsulation using an epoxy-based paint. A total of 12 post-cleanup surface wipe samples were collected from the concrete floor surface, with results ranging from less than 1 μ g/100 cm² to 35 μ g/100 cm². Based on the wipe sample results, the surfaces were then encapsulated with three coats of epoxy paint. The three layers were color coded in gray, tan and red from the top to bottom.

In the central transformer room, remedial activities included decontamination of concrete surfaces by washing and rinsing, scabbling, encapsulation, and removal of concrete slabs and underlying soils. During the initial investigation, seven concrete cores and six sub-slab pea gravel samples were collected at depths ranging up to 2.4 feet bgs. Two concrete core samples and two pea gravel samples contained PCBs at concentrations above 10 ppm, the EPA-specified cleanup level for PCBs-impacted material left in placed at the site. The concrete floor in the east portion of the electrical room was removed and replaced, along with the underlying pea gravel, to depths up to approximately 3.2 feet bgs. In the western portion of the room, the floor was scabbled. Based on the results of three post-scabbling wipe samples (all less than 10 μ g/100 cm²), no further remedial action was completed on the electrical room floor. In addition, the eastern half of the north wall of the electrical room wall. Based on the results (both less than 10 μ g/100 cm²), no further remedial action was completed on the electrical room wall.

In the hallway areas outside of the Central tower transformer room, remedial activities included decontamination of concrete surfaces by washing and rinsing, scabbling, encapsulation, and removal of a portion of the concrete slab. Based on the results of the initial investigation and follow-up sampling, portions of the surrounding hallway were washed and rinsed, encapsulated, or removed. In addition, the concrete slab in the doorway of the fan room was removed and replaced, and the remainder of the impacted hallway concrete floor area was encapsulated.

Terracon completed additional sampling activities and prepared the following documents:

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 15, 2016 ■ Terracon Project No. BA158014

- PCBs Concrete and Soil Sampling Work Plan and Sampling and Analytical Plan dated October 7, 2015
- PCB Soil and Concrete Remediation Specification, Section 02 84 50, Addendum 3, dated December 10, 2015
- PCBs Concrete and Soil Sampling Investigation Report dated January 12, 2016,

Based on the work conducted by Terracon, PCBs were identified in portions of the concrete slabs and walls in the North, South and Central towers at concentrations equal to or exceeding 2 ppm, but less than 50 ppm. PCBs were detected in the pea gravel fill material immediately underlying the concrete slabs at depths of 0.5 feet bgs in the North and Central towers at concentrations equal to or exceeding 2 ppm, but less than 50 ppm.

Based on the sample results, portions of the concrete floor slabs and/or concrete masonry walls in the North, South, and Central tower transformer rooms, as well as a portion of the shallow pea gravel beneath the concrete floor in the North and Central tower transformer room areas, contain PCBs at concentrations exceeding 2 ppm, and will therefore require proper disposal as "State Special Waste" per WAC 173-303. Please refer to the PCB Soil and Concrete Remediation Specification, Section 02 84 50, Addendum 3, dated December 10, 2015, which is included as Appendix C, for further information regarding handling and disposal.

1.3 Standard of Care

Terracon's services will be performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. Please note that Terracon does not warrant the work of laboratories, regulatory agencies or other third parties supplying information used in the preparation of this work plan and sampling and analysis plan, or in any subsequent reports. Our services will be performed in accordance with the scope of work agreed to by our client, as reflected in our executed task order, and are not restricted by ASTM E1903-11.

Findings, conclusions and recommendations resulting from our services are based upon information derived from the on-site activities and other services performed under our scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, non-detectable or not present during these services, and we cannot represent that the site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this investigation. Subsurface conditions may vary from those encountered at specific borings or during other surveys, tests, assessments, investigations or exploratory services; the data, interpretations.

North Campus Student Housing - McCarty Hall Seattle, Washington January 15, 2016 Terracon Project No. BA158014

findings, and our recommendations are based solely upon data obtained at the time and within the scope of these services.

No environmental site assessment can wholly eliminate uncertainty regarding the potential for contaminants in connection with a property. Completion of the activities proposed in this work plan and sampling and analysis plan is intended to reduce, but not eliminate, uncertainty regarding the existence of contaminants in connection with the subject property.

1.4 Reliance

This cleanup verification work plan and SAP are certified to, can be relied upon by, and has been prepared for the exclusive use of the University of Washington and regulatory agencies having jurisdiction over the site. Reliance on this work plan, SAP, and any subsequent reports by the client and all authorized parties will be subject to the terms, conditions and limitations stated in our proposals, reports, and Argus Pacific's Master Agreement for Regulated Building Materials and Engineer Services with the University of Washington.

2.0 Investigation Objectives

The overall objectives of the PCBs Concrete and Soil Sampling Cleanup Verification Work Plan and Sampling and Analysis Plan at McCarty Hall are outlined in the following sections.

2.1 Project Objectives

The primary objective of this plan is to verifying that the PCB remediation work is conducted in compliance with 40 CFR Part 761 Subpart O and the UW specification attached as Appendix C. Terracon will observe all aspects of the planned remediation work and will, on behalf of the UW, perform site cleanup verification sampling in compliance with 40 CFR Part 761 Subpart O. The attached Exhibit 2 shows the remediation areas with proposed cleanup verification sampling points for both concrete and soil.

2.2 Data Quality Objectives

The overall QA/QC objectives of this work plan and SAP are to outline procedures for the collection and assessment of data that are within acceptable ranges of precision, accuracy, representativeness, completeness, and comparability (PARCC) to meet the project Data Quality Objectives (DQOs). The DQOs associated with environmental data are a function of the sampling rationale and the procedures used to collect the samples, as well as the analytical methods and instrumentation used. However, uncertainty cannot be eliminated entirely from environmental data.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 15, 2016 ■ Terracon Project No. BA158014

Details regarding the sampling rationale, procedures, and analytical methods are provided in Sections 4.0 through 5.0 of this work plan and SAP. Information with respect to field and laboratory quality assurance and quality control checks is provided in Sections 6.0 and 7.0.

The DQOs for this investigation will be used to provide environmental data of sufficient quantity and quality to support an evaluation of the successful removal of regulated materials impacted with historical PCBs releases to the concrete floor and underlying pea gravel fill associated with the electrical transformers and appurtances located in the basement areas of the North, South, and Central towers.

2.3 Regulatory Standards/Guidelines

PCBs and PCB-contaminated materials are regulated by the EPA under TSCA (40 CFR Part 761), as well as by the Washington State Department of Ecology under the Model Toxics Control Act (MTCA) and Dangerous Waste Regulations. Based on the previous work conducted at the site by Terracon and others, which were conducted under TSCA and reviewed by EPA Region X, it has been determined that the proposed PCBs-contaminated materials removal and confirmation sampling work will also be conducted under TSCA, and that this work plan and SAP and any subsequent reports will be submitted to EPA Region X for review and comment.

3.0 Physical Setting

Brief descriptions of regional and local topographic and hydrogeologic settings associated with the site are presented in this section.

3.1 Site Geology and Hydrogeology

Soil types documented at the site during Terracon's 2015 site characterization work and Dames & Moore's sub slab investigation (Dames & Moore / Closure Report PCB Remediation 1997) consisted of pea gravel (probable slab underlayment) to the maximum depth explored (4 feet bgs). No indications of groundwater were observed during the investigations. Please see Appendix B for further information regarding the regional and local geology and hydrogeology.

4.0 Concrete and Soil Sampling Strategy and Rationale

Described in this section are the sampling strategies that will be employed to meet the project and data quality objectives stated above, as well as the rationale behind the selection of sample locations and analytical methods.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 15, 2016 ■ Terracon Project No. BA158014

Terracon proposes to collect 11 full-depth samples from the concrete floor slabs and nine full-depth samples from the concrete walls in the North and South tower transformer rooms following completion of the PCBs-impacted concrete removal work. Soil sampling following completion of the PCBs-impacted soil removal work in the North and Central tower transformer rooms will be conducted by utilizing a stainless steel shovel to collect samples of the pea gravel fill/soils and will include collecting 21 discrete samples, 13 from the North tower and 8 from the Central tower.

4.1 Concrete Sampling

Concrete samples will be collected utilizing a rotary hammer and bit to produce pulverized samples of the concrete. One discrete full-depth sample from each location shown in Exhibit 2 will be collected for laboratory analysis. Due to the size of the PCBs-impacted concrete slab area in the North tower each one of the three samples collected from the South, West and East sides will be analyzed as a discrete sample. In the South tower two discrete samples will be collected from each side of the impacted concrete slab area, and will subsequently be composited into one sample per "edge" (i.e., North, South, East and West). Concrete wall cleanup verification sampling in each tower will consist of collecting one discrete sample from the horizontal extent (i.e., East and West) of the wall removal and one discrete sample above the vertical extent of the wall removal, for a total of three samples per tower.

Concrete samples requiring compositing will be composited per 40 CFR 761.289, and either mixed in the field or at Terracon's Mountlake Terrace office. Concrete samples will be submitted to ALS Analytical Group (ALS) in Everett, Washington, for PCBs analysis by EPA Method 8082, in accordance with the procedures outlined in Section 6.0 below.

The results of these analyses will be used to assess the completion of the PCBs-impacted materials removal work and to determine if additional concrete slab or wall materials need to be removed and disposed as State Special Waste.

4.2 Soil Sampling

Following excavation and removal of the PCBs-impacted soil areas shown in the Central and North towers on Exhibit 2, discrete soil samples will be collected for laboratory analysis from the excavation bottom and sidewalls using a clean stainless steel hand shovel. In the North tower, two discrete samples will be collected from the East and West sidewall of the excavation, and three from the North and South sidewall and the excavation bottom to be composited into one sample per sidewall (e.g. North, South, East and West) and pit bottom. Due to the size of the PCBs-impacted soil area in the Central tower, one discrete soil sample will be collected from the East and West sidewall and submitted along with two discrete

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 15, 2016 ■ Terracon Project No. BA158014

samples from the North and South sidewall and pit bottom of the impacted area to be composited into one sample per sidewall and pit bottom.

Soil samples requiring compositing will be composited per 40 CFR 761.289, and either mixed in the field or at Terracon's Mountlake Terrace office. Soil samples will be submitted to ALS for PCBs analysis by EPA Method 8082, in accordance with the procedures outlined in Section 6.0 below.

The results of these analyses will be used to assess the completion of the PCBs-impacted soil removal work, and to determine whether additional soil needs to be removed and disposed as State Special Waste.

5.0 Field Methods and Sampling Procedures

The following section provides detailed information regarding the methods and procedures that will be used to conduct the additional site characterization.

5.1 Pre-mobilization Activities

Prior to conducting intrusive activities, several critical tasks will be performed to ensure compliance with applicable regulatory requirements and to minimize the potential risk associated with rotary hammer operations and subsurface sampling.

EPA Review – This work plan and SAP will be submitted to EPA Region X for review and approval.

Underground Utility Clearance – The general contractor selected by the UW for the project, W. G. Clark Construction Company (WG Clark) of Seattle, Washington and their subcontractor conducting the concrete and soil removal work will be responsible for all utility locating and clearances. Terracon will confirm that the utility clearances have been completed by the contractor prior to collecting concrete or soil samples.

5.2 Pre-Construction Meeting

Terracon will schedule an on-site pre-construction meeting with the University of Washington and WG Clark and their subcontractor to discuss the proposed PCB-s-impacted materials removal activities and subsequent cleanup verification sampling procedures.

5.3 Health and Safety

A site-specific Health and Safety Plan (HASP) has been prepared for this investigation and will be implemented by all field personnel and project management. All field personnel are

North Campus Student Housing - McCarty Hall Seattle, Washington January 15, 2016 Terracon Project No. BA158014

required to read and understand the HASP prior to the initiation of work. In addition, a daily tailgate safety meeting will be conducted by the Terracon site safety officer prior to the start of field activities.

5.4 Sampling Activities

Based on the surface and subsurface conditions and fill/soil types present at the site, it is anticipated that the all concrete drilling and sampling activities will be conducted using a rotary hammer and bit, and that all soil samples will be collected using a clean stainless steel shovel.

Concrete Sampling – Concrete samples will be collected using a rotary hammer and bit to produce pulverized samples of the concrete. Bit size will vary by location but will be between 1-4 inches in diameter. The drill bit will be placed within a dust collection shroud to control fugitive dust. In addition, a High Efficiency Particulate Air (HEPA) filter equipped air scrubber will also be placed adjacent to the sample location to help control fugitive dust. Concrete samples will be collected into 4-oz glass jars using clean stainless steel scoops.

Soil Sampling – Pea gravel fill/soil samples will be collected from excavation sidewalls and bottoms using a clean stainless steel shovel. Soil samples will be collected into 4-oz glass jars using clean stainless steel scoops.

5.5 Decontamination Procedures

Decontamination of non-disposable sampling equipment will be performed prior to sampling and in between sample locations to prevent the introduction of extraneous material into samples and to prevent cross-contamination between samples. All non-disposable sampling equipment utilized will be decontaminated by washing with a non-phosphate detergent, such as Liquinox™, Alconox, or equivalent, followed by a distilled water rinse. Decontamination water will be collected in drums onsite.

5.6 Sample Handling Procedures

The following subsections provide details regarding the sample handling procedures that will be followed for this investigation. These include sample labeling, packaging, and shipping procedures.

Compositing - Samples requiring compositing will be composited per 40 CFR 761.289, and either mixed in the field or at Terracon's Mountlake Terrace office.

Labeling - Sample labels are necessary to prevent misidentification of samples. Sample labels will be filled out in indelible black or blue ink and affixed to sample containers at the

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 15, 2016 ■ Terracon Project No. BA158014

time of sample collection. Each sample container will be labeled with the following, at a minimum:

- Sample identification number
- Sample collection date (month/day/year)
- Time of collection
- Sampler's initials
- Analyses required

Packaging and Shipping - Immediately after sample labeling, sample containers will be bagged in a resealable plastic bag to protect the samples from moisture and to prevent breakage and potential cross-contamination during transportation to the laboratory. All glass sample containers will be protected with bubble wrap if transported by a commercial carrier. The temperature of the samples will be recorded by the laboratory on the Chain of Custody (COC) record immediately upon receipt of the samples.

Sample cooler drain spouts will be taped from the inside and outside of the cooler to prevent any leakage. Samples transported by a laboratory-assigned courier will be packed in a sample cooler with sufficient ice to keep the samples cooled.

5.7 Sample Documentation

The following subsections provide details regarding the sample documentation procedures that will be followed for this investigation. These include preparation of Chain of Custody Forms and documentation of field notes.

Chain of Custody (COC) - To establish the documentation necessary to trace sample possession from the time of collection through analysis and disposal, a COC record will be completely filled out and will accompany every sample. Samples will be delivered to the laboratory for analysis as soon as practical. A COC record will accompany all samples. At a minimum, the following items will be recorded on the COC record:

- Project name
- Project location/Site ID
- Project number
- Sample ID
- Sampler name
- Date (of sample collection)
- Time (of sample collection to the nearest minute, 24-hour clock)
- Sample type (matrix)
- Number of sample containers
- Analyses required
- Comments

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 15, 2016 ■ Terracon Project No. BA158014

- Observations specific to sample
- The sampler will be the first person to relinquish sample possession
- Courier/laboratory representative signature
- Date/time (of custody transfer)

Field Logbooks/Notebooks - In order to maintain the integrity and traceability of samples, all information pertinent to field sampling will be recorded in a field logbook or field notebook. All samples will be properly labeled and packaged prior to being transported to the laboratory and will be accompanied by completed COC documentation. All documentation will be recorded in the field logbook or notebook in indelible black or blue ink.

At the end of each workday, the logbook/notebook pages will be signed by the responsible sampler and any unused portions of the logbook pages will be crossed out, signed, and dated. If it is necessary to transfer the logbook to another person, the person relinquishing the logbook will sign and date the last page used and the person receiving the logbook will sign and date the next page to be used.

At a minimum, the logbook will contain the following information:

- Project name and site location
- Date and time
- Personnel in attendance
- General information
- Work performed
- Field observations
- Sampling performed, including specifics such as location, type of sample, type of analyses, and sample identification
- Descriptions of deviations from this work plan and sampling and analysis plan
- Problems encountered and corrective action taken
- Identification of field QC samples
- QC activities
- Verbal or written instructions
- Any other events that may affect the samples

5.8 Investigation Derived Waste

One 16-gallon drum of investigation-derived waste (IDW) will be stored at the site for this project. Decontamination water will be generated during the sampling activities performed during this investigation and will be placed in the 16-gallon water drum stored on site

The drum will be clearly labeled with the following information:

- Contact information for Terracon Consultants
- Date (day that accumulation of drum contents was initiated)

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 15, 2016 ■ Terracon Project No. BA158014

- Media type (concrete/soil spoils, decontamination water)
- Disposition (non-hazardous, pending analysis)

The IDW drum will be sampled for PCBs analysis by EPA Method 8082 following completion of cleanup verification activities to determine regulatory status. If required based on the analytical results, the drum will be disposed of in conjunction with the PCBs-impacted concrete and soil.

6.0 Analytical Strategy

This section outlines the analytical methods, sample containers, preservative requirements, and field quality control (QC) samples for this investigation.

6.1 Analytical Methods

The following analytical methods will be used to analyze concrete, soil and decontamination water samples for this project:

PCBs analysis by EPA Method 8082.

Detailed information on methods and calibration criteria is provided in Section 7.0.

6.2 Sample Containers, Preservatives, and Holding Times

Concrete, soil and decontamination water samples will be placed in clean glassware provided by the laboratory. Each soil sample will comprise of one 4-ounce clear glass jar. Each decontamination water sample will comprise one 1-liter amber bottle without preservative. Hold times for PCBs analysis of concrete/soil and water are 7 days to extract and then 40 days to analyze.

6.3 Field Quality Control Samples

Field QC samples will be collected and analyzed during the project to assess the consistency and performance of the sampling program. Field QC samples for this project will consist of one concrete sample duplicate and a single equipment blank. Field QC samples will be analyzed for PCBs using EPA Method 8082.

The field duplicate will consist of two distinct concrete samples (an original and a duplicate) from the same sample location collected at the same time to the extent practical and using the same sampling techniques. The field duplicate data will be used to evaluate the precision of the overall sample collection and analysis processes. Due to the heterogeneous nature of the soil matrix, field duplicate samples of soil will not be collected.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 15, 2016 ■ Terracon Project No. BA158014

Field duplicates are uniquely identified so that the identity of the field duplicates is "blind" to the analytical laboratory. Locations of field duplicate samples and their identifications will be recorded in the field notes.

The equipment blank will be prepared by pouring a sample of deionized water over or through decontaminated field sampling equipment prior to the collection of environmental samples. The equipment blank will be stored with the other samples and analyzed by the laboratory for PCBs by the same method used for the other samples.

Equipment blanks are used to assess the adequacy of the decontamination process. They assess contamination from the total sampling, sample preparation and measurement process, when decontaminated sampling equipment is used to collect samples. Equipment blanks must be prepared using the same type of containers as the field samples.

7.0 Analytical Quality Control Procedures

This section describes laboratory qualification, sample custody and documentation, QC procedures, QC samples, preventative maintenance, data review, and deliverables for the collection of samples for chemical analysis.

7.1 Qualifications of Analytical Laboratory

The analytical laboratory selected to analyze samples for this project will be certified by the Washington State Department of Ecology and through the National Environmental Laboratory Accreditation Program (NELAP) for all of the analytical methods required for the project. The selected laboratory for the project will be capable of providing the required turnaround times, project QC, and data deliverables required by this work plan and sampling and analysis plan.

7.2 Laboratory Quality Control Procedures

The analytical laboratory must have written standard operating procedures (SOPs) defining the instrumentation, instrumentation maintenance, tuning, calibration, method detection and RLs, QC requirements, blank requirements, and step-by-step procedures for each analytical method. The SOPs must be available to the analysts performing the work. The SOPs must meet or exceed the requirements of the analytical methods cited in this work plan and sampling and analysis plan. The laboratory must maintain logs of all activities that have an impact on the quality of the laboratory results.

Any portion of the method that is subcontracted by the laboratory to another laboratory or sent to another facility of the same network of laboratories must have the prior approval of the Terracon Project Manager.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 15, 2016 ■ Terracon Project No. BA158014

The laboratory must maintain the instruments in working condition required by the methods specified for the analyses. Sufficient redundancy in equipment must be available in the laboratory to handle downtime situations. Method substitution because of instrumental failure will not be permitted without written approval from the Terracon Project Manager.

7.3 Laboratory Quality Control Samples

The following subsections outline the laboratory QC samples required by this project.

Calibration - All instruments and equipment must be calibrated in accordance with the specified methods, unless different instructions are included in this document. Each instrument must be calibrated with the standard solutions appropriate to the type of instrument and the calibration range established for the method.

Initial calibrations (ICALs) should be performed when the method is first used and again whenever the continuing calibrations fail to meet their respective acceptance criteria. In addition, if the instrument undergoes significant maintenance, the ICAL must be repeated. Continuing calibrations verify that the instrument performance has remained within the limits set at the time of the ICAL. The frequency of continuing calibrations is specified in referenced methods.

Instrument/Calibration Blanks - Instrument blanks are run to ensure that analytes from previous runs have been purged out of the system and do not contaminate succeeding runs. Instrument blanks must be run following calibration runs, before sample analyses are performed, and after samples containing high concentrations of potentially interfering materials are found.

Target analytes must not appear in the instrument blanks at concentrations greater than half the required RLs. If the laboratory consistently observes contaminants in the instrument blanks, the laboratory must investigate the source of the contamination and eliminate it, if possible.

Method Blanks (MB) - Method blanks are prepared in the same manner as the samples, using the same reagents and glassware as for samples. The purpose of the method blank is to ensure that the equipment and reagents used in preparing the samples are free of contaminants that could interfere with the analysis. The method blank must be prepared and analyzed for each batch of 20 project samples or less per matrix (aqueous and solid) type.

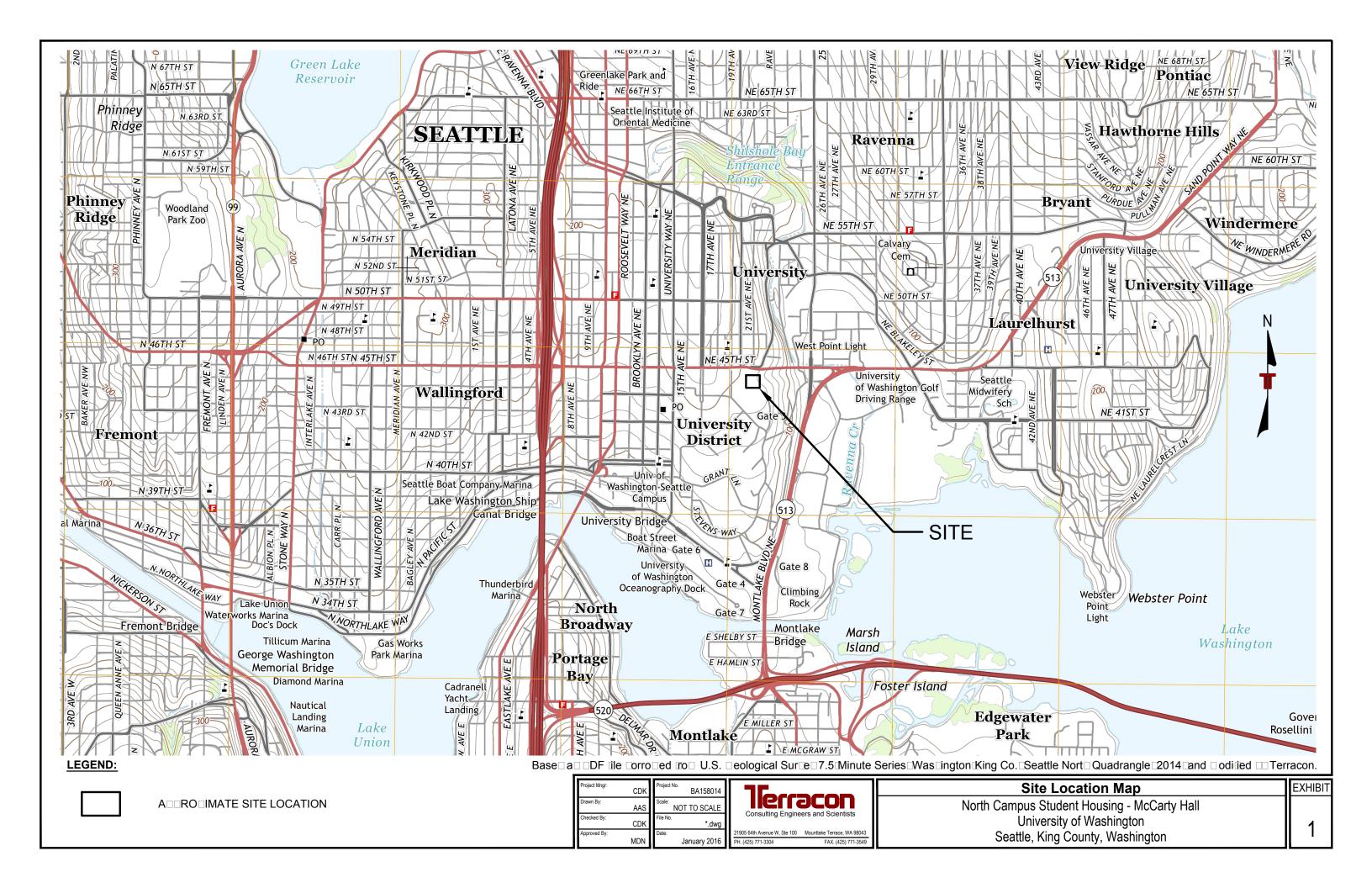
The method blank must not exhibit analytes at concentrations greater than half the required RLs. If contaminants are found that either contribute to the apparent concentration of a particular target analyte or interfere with the analysis, the analysis must be stopped, the source of contamination identified and corrected, and the analysis repeated. Contamination

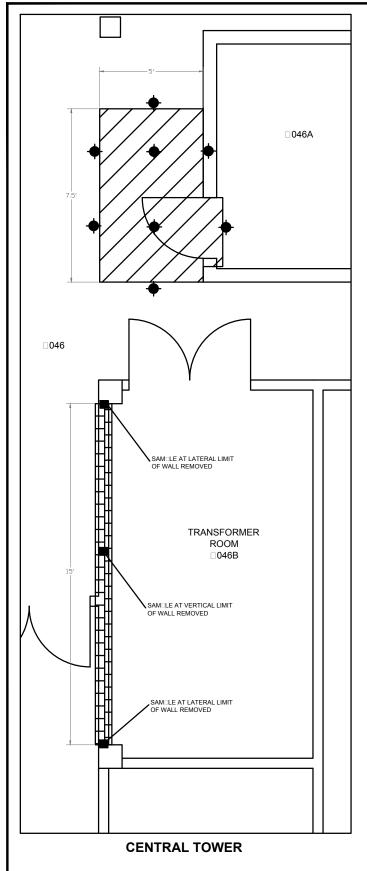
North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 15, 2016 ■ Terracon Project No. BA158014

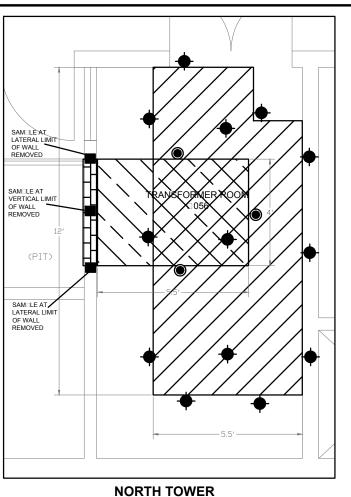
in the method blank above half the RLs will require that the entire associated batch of extracts or digestates be reprepared and reanalyzed. Hence, it is very important to make sure that no such contamination is present.

Laboratory Control Samples (LCS) - LCSs are pre-prepared and checked samples containing known concentrations of specific target analytes. LCSs can also be prepared by spiking known amounts of target analytes into a well-characterized blank matrix. The matrix must be analyte-free, laboratory reagent-grade water for water samples and clean sand or equivalent for soil samples.

The LCS is prepared and run at a frequency of one per 20 project samples per matrix with the associated samples, using the same reagents and volumes. If insufficient quantity of sample is available for MS/MSD, the LCS will be prepared and analyzed in duplicates (LCSD). All analytes in the LCS must meet recovery criteria. If the criteria are not met, the entire batch of samples must be reprepared, together with a new LCS, and reanalyzed.


Matrix Spike and Matrix Spike Duplicate (MS/MSD) - The MS/MSD serves to determine whether matrix effects are affecting recoveries. For inorganic analyses, only a single MS is performed per batch. A MS/MSD is prepared by spiking a known amount of solution to two portions of a sample being run in a batch. Once the spike is added to the MS/MSD samples, these samples are carried through the complete sample preparation process along with the other samples in the batch. The MS/MSD recoveries are compared against each other and against the known amount of the spike.


From this data, both accuracy and precision can be determined. The laboratory will perform a MS/MSD at a frequency of one per 20 project samples per matrix. To prepare a project-specific MS/MSD, field personnel will collect additional sample volumes at a frequency of one per 20 samples. Field personnel will designate samples for MS/MSD analysis on the COC record.


APPENDIX A

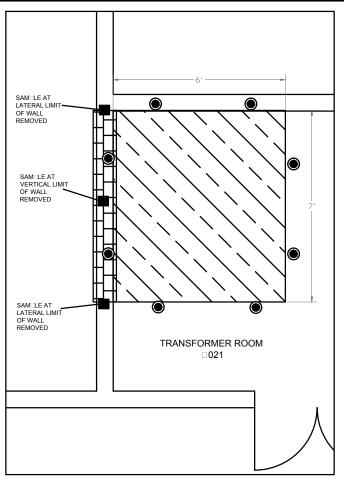

Exhibit 1: Site Location Map

Exhibit 2: PCB Cleanup Verification Sample Plan

SOUTH TOWER

LEGEND:

REMOVE SOIL ONLY TO 24 INCHES BELOW SLAB

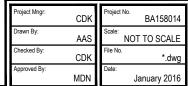
REMOVE CONCRETE SLAB ONLY

A RO IMATE CONCRETE CLEANU VERIFICATION SAM□LE LOCATION

REMOVE LOWER 12 INCHES OF CMU WALL BLOCK ONLY

A BO IMATE CONCRETE OR CMU BLOCK WALL CLEANU VERIFICATION SAM LE LOCATION

NOTES:


- PCB CONTAMINATION HAS BEEN IDENTIFIED IN THE AREAS OF WORK RESULTING FROM TRANSFORMER OIL SPILLS WHICH WERE CHARACTERIZED BY DAMES AND MOORE IN THE 1990's. SUBSEQUENTLY AN INTERIM SITE CLEANUP WAS PERFORMED. CONSISTIN OF REMOVAL OF CONCRETE REMOVAL OF SOIL SURFACE CLEANIN . SCARIFICATION OF THE UDDER SURFACE OF CONCRETE AND ENCADSULATION. REMAININ GCB CONTAMINATED CONCRETE AND SOIL REQUIRE REMOVAL TO FACILITATE DEMOLITION OF THE EDISTIND BUILDINDS.
- 2. SOIL CLEANU VERIFICATION SAMULINU IN THE CENTRAL TOWER WILL CONSIST OF COLLECTION AND ANALYSIS OF A TOTAL OF FIVE 5 COMOSITE SOIL SAMOLES CONSISTING OF THE FOLLOWING DISTRIBUTION OF EIGHT GOSEGARATE DISCRETE

☐ OF DISCRETE SAM□LES 1 DE CAVATION FLOOR 2 DISCRETE SAM□LES 2 □NORTH SIDEWALL□ 2 DISCRETE SAMULES □ □SOUTH SIDEWALL □ 2 DISCRETE SAM□LES 4 □EAST SIDEWALL□ 1 DISCRETE SAM□LE 5 □WEST SIDEWALL□ 1 DISCRETE SAM□LE

SOIL CLEANU VERIFICATION SAMULINU IN THE NORTH TOWER WILL CONSIST OF COLLECTION AND ANALYSIS OF A TOTAL OF FIVE 5 COMOSITE SOIL SAMOLES CONSISTING OF THE FOLLOWING DISTRIBUTION OF THIRTEEN 2 DESCARATE DISCRETE SAMULES

SAM LES	☐ OF DISCRETE SAM□LES
1 DE CAVATION FLOOR	☐ DISCRETE SAM☐LES
2 □NORTH SIDEWALL□	☐ DISCRETE SAM☐LES
□ □SOUTH SIDEWALL□	☐ DISCRETE SAM☐LES
4 □EAST SIDEWALL□	2 DISCRETE SAM□LES
5 □WEST SIDEWALL□	2 DISCRETE SAM□LES

- THE NORTH TOWER CONCRETE CLEANU VERIFICATION SAMULINU WILL CONSIST OF THE COLLECTION OF AT LEAST ONE I DISCRETE SAMULE FROM EACH ED E OF THE REMEDIATION DONE BEYOND THE CONCRETE REMOVAL AREADWITH THE EDCEDTION OF THE NORTH ED E WHERE THE TERMINAL ED E OF THE SLAB WILL BE REMOVED ⅢIT AREA IS AD □ACENT TO NORTH □
- THE SOUTH TOWER CONCRETE CLEANU VERIFICATION SAM LIN WILL CONSIST OF THE COLLECTION OF A ROUMATELY TWO 2 DISCRETE SAMULES FROM EACH ED E OF THE REMEDIATION ONE BEYOND THE CONCRETE REMOVAL AREA FOR A TOTAL OF AUGROUMATELY EIGHT WIDDISCRETE SAMULING GOINTS TO BE COMOSITED INTO ONE 1 SAMOLE OF TEDOE." Te.g. NOSOF OWN
- CONCRETE WALL CLEANU $\!\square$ VERIFICATION SAM $\!\square$ LIN $\!\square$ IN EACH TOWER WILL CONSIST OF COLLECTING AT LEAST ONE DEDISCRETE SAMULE FROM EACH ENDOAND AT LEAST ONE 🛘 DISCRETE SAM LE ABOVE THE VERTICAL LIMIT OF THE WALL DORTION REMOVED FOR A TOTAL OF THREE SAMBLES BER TOWER.
- 7. IN THE EVENT DATA INDICATES CB CONCENTRATIONS ABOVE TWO CART CER MILC LION 12 DEMOIN ANY OF THE COMPOSITE SAMPLES OUTLINED ABOVE ADDITIONAL E CAVATION OR CONCRETE REMOVAL WILL BE ERFORMED AT THE CORRES ONDING AREA CONCRETE ONE E CAVATION FLOOR OR SIDEWALL SUBSEQUENT VERIFICATION SAMULINU WILL BE DERFORMED IN A SIMILAR FASHION AS INITIAL VERIFICATION SAMULINU WHICH WILL INCLUDE COLLECTION COINTS ON AN A RO MATELY 2.5 FOOT RID.
- □ ALL □CB CONTAMINATED CONCRETE AND SOIL WILL BE E□CAVATED AND DIS□OSED OF AS "STATE SECIAL WASTE" ER WAC 17 TO FOR DISCOSAL AT A "SUBTITLE D" LANDFILL DERMITTED TO ACCEDT SUCH WASTE.
- □ROUNDWATER WAS NO ENCOUNTERED DURIN□ ANY TERRACON OR DAMES AND MOORE WORK. AS SUCH NO ROUNDWATER IS ANTICIDATED TO BE IMPACTED BY **LANNED REMEDIAL ACTIVITIES.**
- 10. SEE LE END FOR A ROUMATE VERIFICATION SAMULE LOCATIONS.

North Campus Student Housing - McCarty Hall University of Washington Seattle, King County, Washington

EXHIBI

APPENDIX B

Terracon - PCBs Concrete and Soil Sampling Investigation Report - January 12, 2016

North Campus Student Housing - McCarty Hall University of Washington Seattle, King County, Washington

> January 12, 2016 UW Project No. 204350 Terracon Project No. BA158014

Prepared for:

University of Washington Seattle, Washington

Prepared by:

Terracon Consultants, Inc. Mountlake Terrace, Washington

terracon.com

Environmental **Facilities**

Geotechnical

Materials

January 12, 2016

lerracon

University of Washington Capital Projects Office Box 352205 Seattle, WA 98195-2205

Mr. Shane Ruegamer Attn:

Re: **PCBs Concrete and Soil Sampling Investigation**

North Campus Student Housing - McCarty Hall

University of Washington

Seattle, King County, Washington

UW Project No. 204350

Terracon Project No. BA158014

Dear Mr. Ruegamer:

Terracon Consultants, Inc. (Terracon) is pleased to submit our report of Polychlorinated Biphenyls (PCBs) concrete and soil sampling investigation activities completed at the site referenced above. The report presents data from recent field activities that included collection of concrete and soil samples for chemical analysis. The activities were completed to assess PCBs in concrete and underlying pea gravel fill at McCarty Hall in each of the hall tower transformer rooms. Terracon conducted the PCBs concrete and soil sampling investigation in general accordance with our PCBs Concrete and Soil Sampling Work Plan and Sampling and Analytical Plan dated October 7, 2015, and Argus Pacific's Master Agreement for Regulated Building Materials and Engineer Services with the University of Washington.

Terracon appreciates this opportunity to provide environmental services to the University of Washington. Should you have any questions or require additional information, please do not hesitate to contact our office.

Sincerely,

Terracon Consultants, Inc.

Chad Kean, CIH, CHMM, CPSWQ

Project Manager II

Michael D. Noll, LG, LHG Senior Project Manager

Terracon Consultants, Inc.

21905 64th Avenue West Suite 100 Washington 98043

Mountlake Terrace.

TABLE OF CONTENTS

1.0	SITE	E DESCRIPTION1			
2.0	sco	PE OF SERVICES	3		
	2.1	Standard of Care	3		
	2.2	Additional Scope Limitations			
	2.3	Reliance			
3.0	FIEL	D INVESTIGATION	4		
	3.1				
	3.2				
4.0	RES	ULTS OF THE FIELD INVESTIGATION			
	4.1	Geology	6		
5.0	ANA	LYTICAL RESULTS	6		
	5.1	Concrete Slab Sample Results	7		
	5.2	Soil Sample Results	7		
	5.3	Concrete Wall Sample Results	7		
	5.4	Quality Control Sample Results	8		
	5.5	Quality Assurance/Quality Control Results	8		
7.0	CON	ICLUSIONS			
8.0	REC	OMMENDATIONS	10		
A D D E	MDIA	A EVUIDITO			

APPENDIX A – EXHIBITS

- Exhibit 1 Site Location Map
- Exhibit 2 Sample Locations McCarty Hall South
- Exhibit 3 Sample Locations McCarty Hall North
- Exhibit 4 Sample Locations McCarty Hall Central
- Exhibit 5 Sample Locations McCarty Hall Central Hall

APPENDIX B - TABLES

- Table 1 Summarized Concrete and Soil Analytical Results
- Table 2 Summarized Investigation Derived Waste Analytical Results

APPENDIX C - ANALYTICAL REPORTS AND CHAIN OF CUSTODY FORMS

APPENDIX D - Terracon - PCBs Concrete and Soil Sampling Work Plan and Sampling and Analytical Plan dated October 7, 2015

PCBS CONCRETE AND SOIL SAMPLING INVESTIGATION North Campus Student Housing - McCarty Hall University of Washington Seattle, King County, Washington

UW Project No. 204350 Terracon Project No. BA158014 January 12, 2016

1.0 SITE DESCRIPTION

The site is located in the North portion of the University of Washington campus. McCarty Hall is comprised of a north, south and central tower. A Site Location Map showing the site location is included as Exhibit 1 and Site Diagrams for each tower's transformer room areas are included as Exhibits 2 through 5 in Appendix A.

Terracon previously completed a PCBs Concrete and Soil Sampling Work Plan and Sampling and Analytical Plan dated October 7, 2015, included as Appendix D. The scope of the work plan and sampling and analytical plan were based on information taken from a previous report completed by Dames & Moore. Dames & Moore completed a Closure Report PCB Remediation at the site in June 1997. As part of an initial investigation, site characterization was conducted in the transformer rooms between November 1994 and March 1995 to determine the nature and extent of PCB contaminated material resulting from transformer oil leaks or spills. The results of the site characterization indicated that PCBs were present in all three transformer rooms at McCarty Hall at concentrations exceeding regulatory action levels under the Toxics Substance Control Act (TSCA). Please refer to the Dames & Moore report included as part of Appendix D for further information regarding the 1994-1995 site characterization and remedial activities.

Dames & Moore conducted remedial activities in the north, south, and central tower transformer rooms in McCarty Hall between July and December 1996. Remedial activities included removal, disposal and/or replacement of the transformers and electrical appurtenances containing PCBs; washing and rinsing of PCB contaminated concrete surfaces; scabbling and encapsulating of the washed PCB contaminated concrete surfaces; removal of selected PCB contaminated concrete slabs and underlying soils; confirmatory sampling and analysis during and following removal or decontamination activities; and waste disposal.

In the north tower transformer room, remedial activities included decontamination of concrete surfaces by washing and rinsing, scabbling, encapsulation, and removal of selected concrete slabs and underlying soils. During the initial investigation, five core samples were collected from the concrete floor. One core sample contained 390 milligrams per kilogram (mg/kg, approximately equivalent to parts per million [ppm]) of PCBs. The concrete floor slabs located in the northeast corner and south-central portion of the electrical room were removed and replaced. Following the concrete floor slab removal, one soil sample collected at approximately seven inches below

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 12, 2016 ■ Terracon Project No. BA158014

ground surface (bgs) contained 1.6 ppm PCBs. A total of four wipe sample were collected prior to the slab removal and, based on the wipe sample results (PCBs concentrations ranged from 7 to 470 micrograms per 100 square centimeters [μ g/100cm²]), portions of the floor slab were either removed or encapsulated. In addition, in the non-encapsulated areas, the floors were washed and rinsed and an additional four wipe samples were collected. Based on the results of the final wipe samples (the results ranged from less than 1 μ g/100cm² to 35 μ g/00cm²), no further remedial action was completed in those areas.

In the south tower transformer room, remedial activities included decontamination of concrete surfaces by washing and rinsing, scabbling, and encapsulation using an epoxy-based paint. A total of 12 post-cleanup surface wipe samples were collected from the concrete floor surface, with results ranging from less than 1 μ g/100cm² to 35 μ g/100cm². Based on the wipe sample results, the surfaces were then encapsulated with three coasts of epoxy paint. The three layers were color coded in gray, tan and red from the top to bottom.

In the central transformer room, remedial activities included decontamination of concrete surfaces by washing and rinsing, scabbling, encapsulation, and removal of concrete slabs and underlying soils. During the initial investigation, seven concrete cores and six sub-slab pea gravel samples were collected at depths ranging up to 2.4 feet bgs. Two concrete core samples and two pea gravel samples contained PCBs at concentrations above 10 ppm, the EPA-specified cleanup level for PCBs-impacted material left in placed at the site. The concrete floor in the east portion of the electrical room was removed and replaced, along with the underlying pea gravel, to depths up to approximately 3.2 feet bgs. In the western portion of the room, the floor was scabbled. Based on the results of three post-scabbling wipe samples (all less than 10 μ g/100cm²), no further remedial action was completed on the electrical room floor. In addition, the eastern half of the north wall of the electrical room was washed and rinsed. Two final wipe samples were collected from the electrical room wall. Based on the results (both less than 10 μ g/100cm²), no further remedial action was completed on the electrical room wall.

In the hallway areas outside of the central transformer room, remedial activities included decontamination of concrete surfaces by washing and rinsing, scabbling, encapsulation, and removal of a portion of the concrete slab. Based on the results of the initial investigation and follow-up sampling, portions of the surrounding hallway were washed and rinsed, encapsulated, or removed. Based on the sampling results, the concrete slab in the doorway of the fan room was removed and replaced, and the remainder of the impacted hallway concrete floor area was encapsulated.

Based on the scope of services, limitations, and findings of the report, Terracon recommended that additional concrete and soil sampling be performed in the vicinity of the McCarty Hall transformer rooms in order to assess residual PCBs in concrete and underlying pea gravel fill prior to the planned demolition of the towers.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 12, 2016 ■ Terracon Project No. BA158014

2.0 SCOPE OF SERVICES

Terracon's scope of work was conducted in general accordance with our PCBs Concrete and Soil Sampling Work Plan and Sampling and Analytical Plan dated October 7, 2015, and Argus Pacific's Master Agreement for Regulated Building Materials and Engineer Services with the University of Washington. Our scope of services included completion of the following tasks:

- Performance of pre-mobilization activities including private underground utility clearances and preparation of a site specific health and safety plan;
- Advancement of forty (40) concrete and underlying pea gravel fill collection borings, and collection of concrete and pea gravel fill samples (where present) from each boring;
- Advancement of ten (10) concrete wall borings, and collection of one concrete sample from each boring;
- Completion of laboratory analyses of concrete, pea gravel fill, and investigation derived waste samples; and
- Preparation of this PCBs concrete and soil sampling investigation summary report.

The concrete and soil sampling activities were conducted in order to investigate the presence or absence and concentration of PCBs in concrete and underlying pea gravel fill in the vicinity of the transformer rooms at the site. The purpose of the concrete and soil sampling work was to further characterize concrete and soil in the transformer room areas in order to help determine if the materials will require special handling during the planned building demolition.

2.1 Standard of Care

Terracon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time. Terracon makes no warranties, either express or implied, regarding the findings, conclusions, or recommendations. Please note that Terracon does not warrant the work of laboratories, regulatory agencies, or other third parties supplying information used in the preparation of the report. These services were performed in accordance with the scope of work agreed with you, our client, and were not restricted by ASTM E1903-11.

2.2 Additional Scope Limitations

Findings, conclusions, and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, nondetectable, or not present during these services. We cannot

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 12, 2016 ■ Terracon Project No. BA158014

represent that the site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this investigation. Subsurface conditions may vary from those encountered at specific borings or during other surveys, tests, assessments, investigations, or exploratory services. The data, interpretations, findings, and our recommendations are based solely upon data obtained at the time and within the scope of these services.

2.3 Reliance

This report has been prepared for the exclusive use of the University of Washington, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the site) is prohibited without the express written authorization of the University of Washington and Terracon. Any unauthorized distribution or reuse is at University of Washington's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions, and limitations stated in the proposal, investigation report, and Argus Pacific's Master Agreement for Regulated Building Materials and Engineer Services with the University of Washington.

3.0 FIELD INVESTIGATION

Terracon has a 100% commitment to the safety of all its employees. As such, and in accordance with our *Incident and Injury Free*® safety goals, Terracon conducted the fieldwork under a site specific health and safety plan developed for this project. Work was performed using the Occupational Health and Safety Administration (OSHA) Level D Modified work attire consisting of the following:

- Hard Hat
- Safety Footwear
- Nitrile or Neoprene Rubber Outer Gloves
- Nitrile Glove Liners
- Safety Eye Wear
- Hearing Protection (if within 10 feet of rotary hammer, concrete coring or other equipment which impairs normal conversation at < 5 feet.)
- Half Face Air purify Respirator equipped with HEPA Cartridges (for controlling PCB concrete dust exposure)
- Cotton Coveralls

In an effort to locate underground utilities in the work area, a private utility location service was subcontracted by Terracon to identify the locations and depths of the various utilities located within the structure to avoid damage to such utilities.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 12, 2016 ■ Terracon Project No. BA158014

3.1 Concrete and Soil Sampling

Field activities were performed within and in the vicinity of the transformer rooms in the North, South and Central towers. Boring locations are depicted on Exhibits 2through 5 of Appendix A.

Terracon field representatives Adam Stauffer and Kyle Long mobilized to the site on November 10-13 and December 17-18, 2015 to conduct the concrete and soil sampling. Concrete sampling was conducted using rotary hammers and bits to produce pulverized samples of the concrete. Soil sampling was conducted using a clean stainless steel hand auger and stainless steel spoons. Sampling equipment was cleaned using an Alconox® wash and potable water rinse prior to the beginning of the project and before collecting each sample.

Soil borings were advanced to depths ranging from directly below the slab (about 0.5 feet bgs) to approximately 4 feet bgs. Exhibits 2 through 5 indicate the approximate locations of the explorations (Appendix A).

A total of forty (40) concrete samples (designated with a "C" on Exhibits 2 through 5) were collected, ten (10) each from the North and South tower transformer rooms and ten (10) each from the Central transformer room and adjacent hallway. In addition five (5) duplicate concrete samples were collected as field quality control samples, including one each from the South and North towers and three from the Central tower. Concrete samples were extracted by hand using disposable gloves and stainless steel spoons and placed directly into laboratory supplied glassware.

A total of forty-four (44) soil samples (designated with an "S" on Exhibits 2 through 5), consisting of underlying pea gravel fill, were collected and submitted for laboratory analysis. Soil samples were extracted using a clean stainless steel hand auger and stainless steel spoons and placed directly into laboratory supplied glassware. At some locations on the northern portion of the South tower transformer room, the concrete slab was directly underlain by metal pan decking associated with an underground steam tunnel, and no pea gravel fill was encountered. In addition, at one location in each of the electrical transformer rooms, a soil sample was collected at approximately two and four feet bgs to evaluate the deeper underlying soils for PCB impacts. Additional deeper soil samples were also collected and analyzed at all locations where sub-slab PCB concentrations were 2 ppm or greater were detected in the initial sample results from this investigation. Deeper samples were sleeved using a PVC casing to hold back pea gravel to reach the final depths.

Each sample container was labeled with the project number, date, time, boring number and sample number. Sample containers were placed in a chilled cooler immediately after sampling, and subsequently transported to a Washington State-accredited laboratory under strict chain-of-custody procedures.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 12, 2016 ■ Terracon Project No. BA158014

At the completion of field activities, the borings were decommissioned using clean pea gravel fill upon the conclusion of field work for this investigation.

3.2 Concrete Wall Sampling

A total of ten (10) concrete masonry unit (cmu) wall samples (designated with a "WC" on Exhibits 2 through 5) were collected, three (3) each from the North and South tower transformer rooms and four (4) from the Central transformer room. Concrete wall samples were extracted by hand using disposable gloves and stainless steel spoons and placed directly into laboratory supplied glassware.

Each sample container was labeled with the project number, date, time, boring number and sample number. Sample containers were placed in a chilled cooler immediately after sampling, and subsequently transported to a Washington State-accredited laboratory under strict chain-of-custody procedures.

4.0 RESULTS OF THE FIELD INVESTIGATION

4.1 Geology

In general, Terracon encountered fill material consisting of pea gravel below the concrete slabs. The pea gravel layer varied in thickness from about 2 feet to 4 feet. The northern portion of the South tower transformer room was situated directly above a steam tunnel located beneath the building; therefore, no underlying fill material was encountered.

5.0 ANALYTICAL RESULTS

The selected concrete and soil samples were submitted to ALS Laboratory Group, a Washington-certified laboratory located in Everett, Washington, and analyzed for PCBs using EPA Method 8082. In addition, samples of investigation derived waste (IDW) contained onsite in Department of Transportation-approved steel drums (one concrete/soil drum and one decontamination water drum) were also analyzed for PCBs using EPA Method 8082.

Reported concrete and soil concentrations were compared with the Washington State Department of Ecology (Ecology) Dangerous Waste Regulations (Washington Administrative Code (WAC) 173-303), as applicable. Specifically, the sample results were compared to the less than or equal to 2 ppm (≤2 ppm)_ and <50 ppm "State Special Waste" designations for PCBs. One PCB Arochlor (PCB-1260) was detected in the samples.

The laboratory analytical report and chain-of-custody record are attached in Appendix C. The following sections describe the results of the testing.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 12, 2016 ■ Terracon Project No. BA158014

5.1 Concrete Slab Sample Results

PCBs concentrations for four (4) of the concrete slab samples exceeded 2 ppm. Three concrete slab samples collected from the northern portion of the South tower transformer room (samples SC-4, SC-5, and SC-6) contained PCBs at concentrations of 12, 8.6, and 16 ppm, respectively. One concrete slab sample collected from the northern portion of the North tower transformer room (sample NC-7) and a duplicate sample (sample NC-11) contained PCBs at concentrations of 3.2 and 2.8 ppm, respectively. The concrete slab samples from the Central tower did not contain PCBs at concentrations exceeding 2 ppm.

The concrete slab sample results are summarized in Table 1 of Appendix B. Exhibits 2 through 5 in Appendix A also show all detectable PCB concentrations.

5.2 Soil Sample Results

PCBs concentrations for four (4) soil samples were detected at or above 2 ppm. Three soil samples collected from the southern and southeastern portions of the North tower transformer room (samples NS-2, NS-3, and NS-9) contained PCBs at concentrations of 24, 3.7, and 2 ppm, respectively. One soil sample collected from the eastern portion of the hallway east of the Central tower transformer room (sample CS-16) contained PCBs at a concentration of 2.5 ppm. All of the soil samples with PCB concentration at or above 2 ppm were collected directly below the slab at the slab-pea gravel interface. The soil samples collected from the South tower did not contain PCBs at concentrations exceeding 2 ppm.

The concrete slab sample results are summarized in Table 1 of Appendix B. Exhibits 2 through 5 in Appendix A also show all detectable PCB concentrations.

5.3 Concrete Wall Sample Results

PCBs concentrations for three (3) of the concrete wall samples exceeded 2 ppm. One concrete wall sample collected from the north wall of the South tower transformer room (sample SWC-1) contained PCBs at a concentration of 2.9 ppm. One concrete wall sample collected from the north wall of the North tower transformer room (sample NWC-1) contained PCBs at a concentration of 2.3 ppm. One concrete wall sample collected from the north wall of the Central tower transformer room (sample CWC-4) contained PCBs at a concentration of 11 ppm.

The concrete wall sample results are summarized in Table 1 of Appendix B.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 12, 2016 ■ Terracon Project No. BA158014

5.4 Quality Control Sample Results

Field quality control (QC) samples were collected and analyzed during the project to assess the consistency and performance of the sampling program. Field QC samples for this project consisted of five concrete duplicate samples (samples SC-11, NC-11, CC-21, CC-22, and CC-23) and an equipment blank (sample Equipment Blank). The QC sample results are included in Table 1.

The field duplicates consisted of two distinct concrete samples (an original and a duplicate) from the same sample location collected at the same time to the extent practical and using the same sampling techniques. All duplicate sample results were consistent with the primary sample results.

The equipment blank was prepared by pouring a sample of deionized water over decontaminated field sampling equipment prior to the collection of environmental samples. The equipment blank was stored with the other samples and analyzed by the laboratory for PCBs by the same method used for the other samples.

The analytical results for the equipment blank had no detectable levels of PCBs.

5.5 Quality Assurance/Quality Control Results

The analytical results for the current investigation were checked for completeness immediately upon receipt from the laboratory to ensure that data and QA/QC information requested were present. Data quality was assessed by considering hold times, surrogate recovery, method blanks, matrix spike and matrix spike duplicate (MS/MSD) recovery, and detection limits. QA/QC review was completed using guidance described in *USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review* (Draft Final, USEPA, 2005). Our evaluation assumes that the QA/QC is correct as reported by the laboratory, and merely provides an interpretation of the QA/QC results.

Hold Times. All analyses were completed within specified hold times.

Surrogate Recoveries. All surrogate recoveries were within laboratory limits.

Method Blanks. Analytes were not detected in any of the laboratory method blanks.

MS/MSD Results. MS and MSD recoveries were all within laboratory limits, and Relative Percent Differences (RPDs) between MS and MSD recoveries were all within laboratory limits.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 12, 2016 ■ Terracon Project No. BA158014

<u>Laboratory Reporting Limits</u>. Reporting limits were below relevant Dangerous Waste cleanup levels.

Data packages were checked for completeness immediately upon receipt from the laboratory to ensure that data and QA/QC information requested were present. Data quality was assessed by considering holding times, surrogate recovery, method blanks, matrix spike and matrix spike duplicate recovery, and detection limits.

Based upon our interpretation of quality control information provided by the laboratories, it is our opinion that the overall dataset is useable as qualified for the purposes of this investigation.

6.0 INVESTIGATION DERIVED WASTES

One 35-gallon drum of soil and concrete waste and one 55-gallon drum of decontamination water were containerized during the field activities as investigation derived wastes (IDW). Based on the analytical results of a composite sample collected from the soil and concrete drum (sample Concrete, Soil Drum), the IDW contained 1.6 ppm PCBs, and can therefore be disposed of as construction debris. The composite sample collected from the decontamination water drum (sample Water drum) was non-detect for PCBs. Therefore, the IDW water can be disposed of in the sanitary sewer and the metal drum can either be recycled or disposed of as construction debris. The IDW sample results are summarized in Table 2.

7.0 CONCLUSIONS

Based on the scope of services described in this report and subject to the limitations described herein, Terracon concludes the following.

PCBs were identified in portions of the concrete slabs and walls in the North, South and Central towers at concentrations equal to or exceeding 2 ppm, but less than 50 ppm. In addition, PCBs were detected in the pea gravel fill material immediately underlying the concrete slabs at 0.5 feet bgs in the North and Central towers at concentrations equal to or exceeding 2 ppm, but less than 50 ppm.

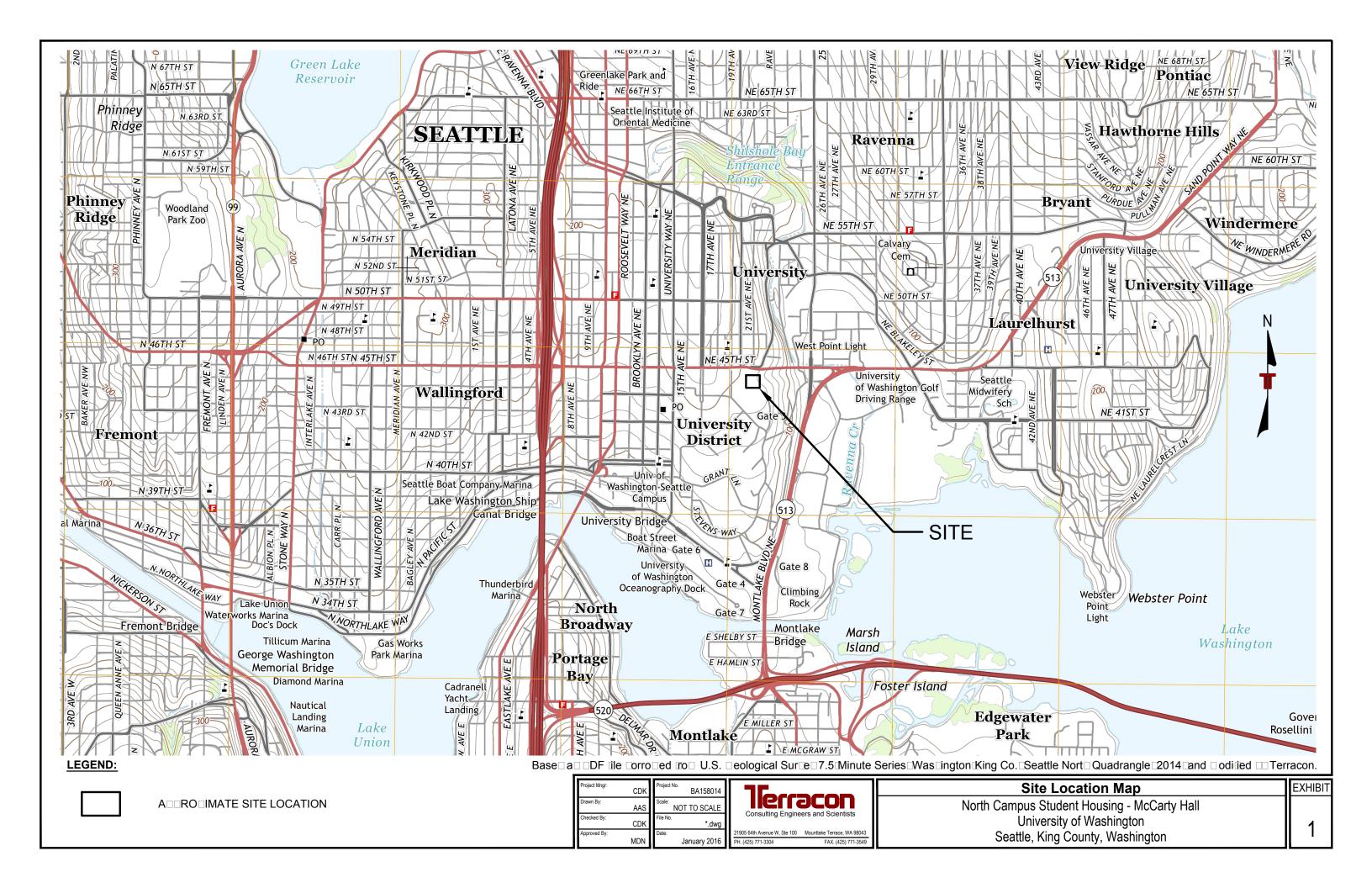
Based on the sample results, the portions of the concrete floor slabs and/or concrete masonry walls in the South, North, and Central tower transformer rooms, as well as a portion of the shallow pea gravel beneath the concrete floor in the North and Central tower transformer room areas, will require proper disposal as "State Special Waste" per WAC 173-303.

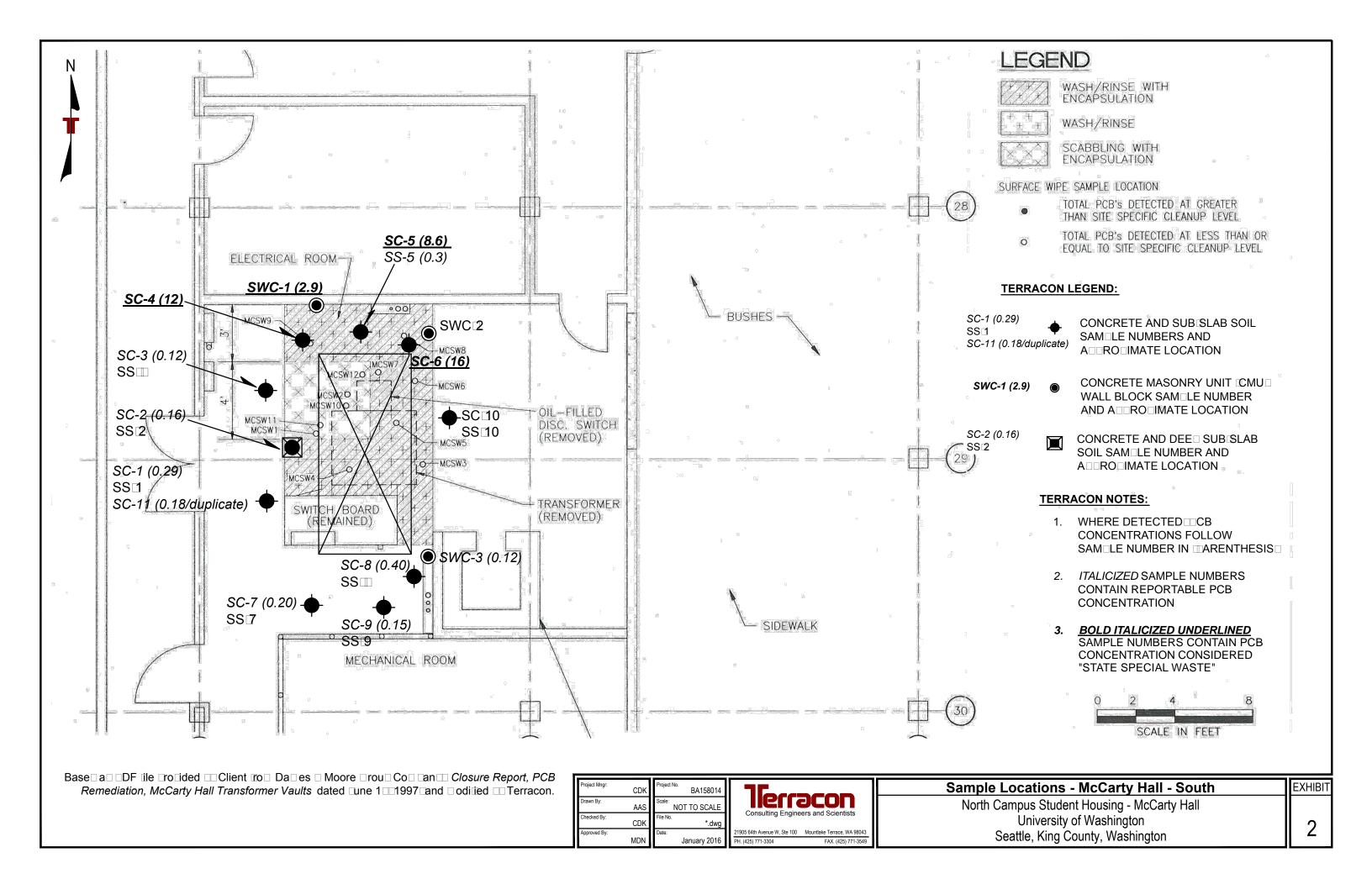
North Campus Student Housing - McCarty Hall ■ Seattle, Washington January 12, 2016 ■ Terracon Project No. BA158014

8.0 RECOMMENDATIONS

Based on the findings of this investigation, Terracon does not recommend additional investigation at the site at this time. Terracon will provided removal and disposal recommendations in the PCB Soil and Concrete Remediation Specifications and in a PCB Site Cleanup Work Plan, to be provided under separate cover.

APPENDIX A - EXHIBITS


Exhibit 1 – Topographic Map


Exhibit 2 – Sample Locations – McCarty Hall – South

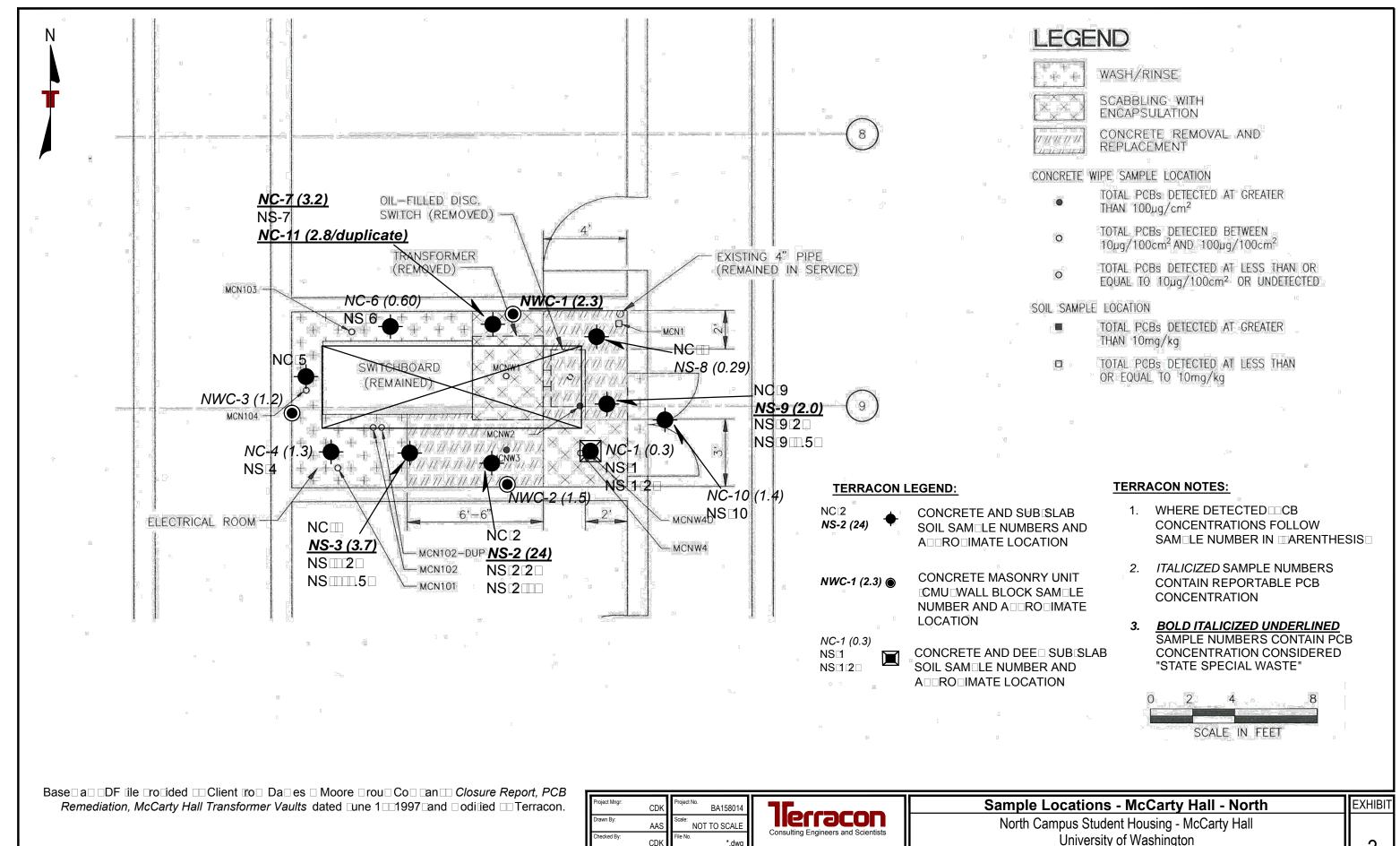
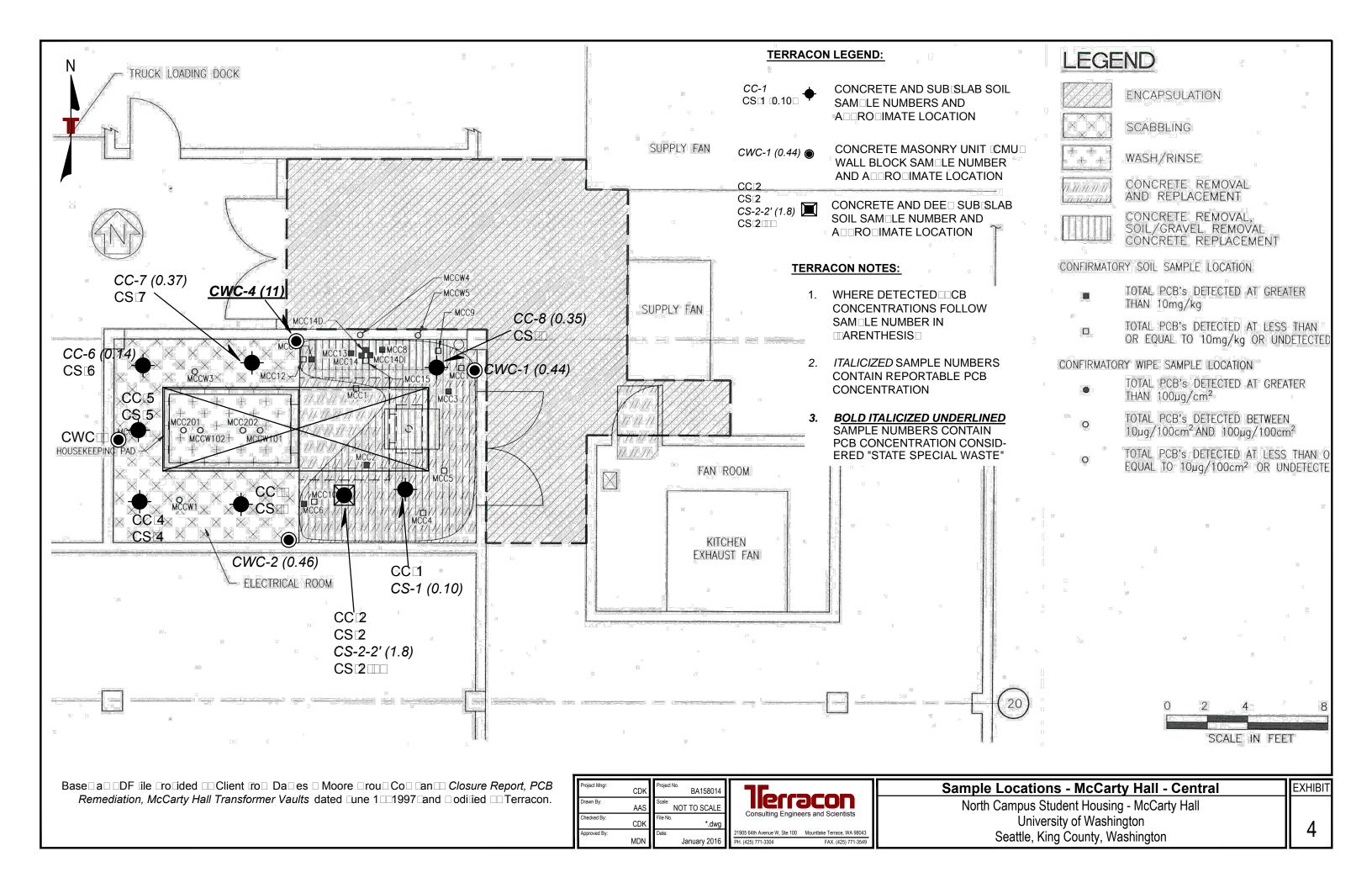
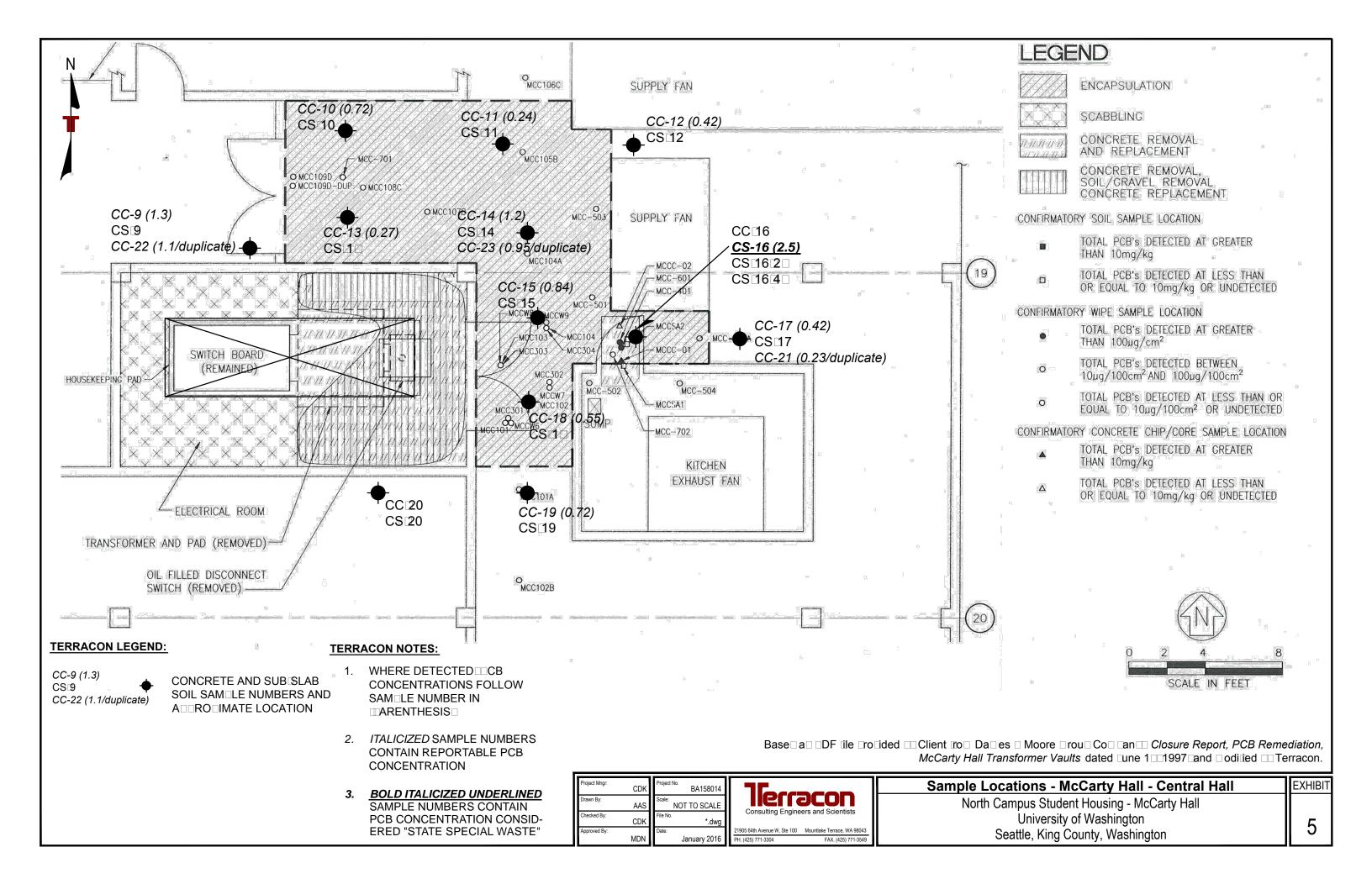

Exhibit 3 – Sample Locations – McCarty Hall – North

Exhibit 4 – Sample Locations – McCarty Hall – Central

Exhibit 5 - Sample Locations - McCarty Hall - Central Hall





3

Seattle, King County, Washington

APPENDIX B - TABLES

Table 1 – Summarized Concrete and Soil Analytical Results
Table 2 – Summarized Investigation Derived Waste Analytical
Results

Table 1 : Summarized Concrete and Soil Analytical Results
North Campus Student Housing - McCarty Hall Replacement
Terracon Consultants Inc. (2015)

Sample ID	Date	Media	Depth (feet)	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	PCB-1268
Central To	wer Transform	er Room Sam _l	ples								
CC-1	11/10/2015	Concrete	Surface	ND (<0.10)							
CS-1	11/10/2015	Soil	.5	ND (<0.10)	0.10	ND (<0.10)					
CC-2	11/10/2015	Concrete	Surface	ND (<0.10)							
CS-2	11/10/2015	Soil	0.5	ND (<0.10)							
CS-2-2'	11/11/2015	Soil	2	ND (<0.10)	1.8	ND (<0.10)					
CS-2-3'	11/11/2015	Soil	3	ND (<0.10)							
CC-3	11/10/2015	Concrete	Surface	ND (<0.10)							
CS-3	11/10/2015	Soil	.5	ND (<0.10)							
CC-4	11/10/2015	Concrete	Surface	ND (<0.10)							
CS-4	11/10/2015	Soil	.5	ND (<0.10)							
CC-5	11/10/2015	Concrete	Surface	ND (<0.10)							
CS-5	11/10/2015	Soil	.5	ND (<0.10)							
CC-6	11/10/2015	Concrete	Surface	ND (<0.10)	0.14	ND (<0.10)					
CS-6	11/10/2015	Soil	.5	ND (<0.10)							
CC-7	11/10/2015	Concrete	Surface	ND (<0.10)	0.37	ND (<0.10)					
CS-7	11/10/2015	Soil	.5	ND (<0.10)							
CC-8	11/10/2015	Concrete	Surface	ND (<0.10)	0.35	ND (<0.10)					
CS-8	11/10/2015	Soil	.5	ND (<0.10)							
CC-9	11/11/2015	Concrete	Surface	ND (<0.10)	1.3	ND (<0.10)					
CS-9	11/11/2015	Soil	.5	ND (<0.10)							
CC-10	11/11/2015	Concrete	Surface	ND (<0.10)	0.72	ND (<0.10)					
CS-10	11/11/2015	Soil	.5	ND (<0.10)							
CC-11	11/11/2015	Concrete	Surface	ND (<0.10)	0.24	ND (<0.10)					
CS-11	11/11/2015	Soil	.5	ND (<0.10)							
CC-12	11/11/2015	Concrete	Surface	ND (<0.10)	0.42	ND (<0.10)					
CS-12	11/11/2015	Soil	.5	ND (<0.10)							
CC-13	11/11/2015	Concrete	Surface	ND (<0.10)	0.27	ND (<0.10)					
CS-13	11/11/2015	Soil	.5	ND (<0.10)							
CC-14	11/11/2015	Concrete	Surface	ND (<0.10)	1.2	ND (<0.10)					
CS-14	11/11/2015	Soil	.5	ND (<0.10)							
CC-15	11/11/2015	Concrete	Surface	ND (<0.10)	0.84	ND (<0.10)					
CS-15	11/11/2015	Soil	.5	ND (<0.10)							
CC-16	11/11/2015	Concrete	Surface	ND (<0.10)							
CS-16	11/11/2015	Soil	.5	ND (<0.10)	2.5	ND (<0.10)					
CS-16-2'	12/17/2015	Soil	2	ND (<0.10)							
CS-16-4'	12/17/2015	Soil	4	ND (<0.10)							
CC-17	11/11/2015	Concrete	Surface	ND (<0.10)	0.42	ND (<0.10)					
CS-17	11/11/2015	Soil	.5	ND (<0.10)							
CC-18	11/11/2015	Concrete	Surface	ND (<0.10)	0.55	ND (<0.10)					
CS-18	11/11/2015	Soil	.5	ND (<0.10)							

Table 1 : Summarized Concrete and Soil Analytical Results
North Campus Student Housing - McCarty Hall Replacement
Terracon Consultants Inc. (2015)

Sample ID	Date	Media	Depth	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	PCB-1268
CC-19	11/11/2015	Concrete	(feet) Surface	ND (<0.10)	0.72	ND (<0.10)					
CS-19	11/11/2015	Soil	.5	ND (<0.10)	ND (<0.10)	ND (<0.10)					
CC-20			.5 Surface			, ,	ND (<0.10)	, ,		, ,	ND (<0.10) ND (<0.10)
	11/11/2015	Concrete		ND (<0.10)	ND (<0.10)	ND (<0.10)		ND (<0.10)	ND (<0.10)	ND (<0.10)	
CS-20	11/11/2015	Soil	.5	ND (<0.10)	ND (<0.10)	ND (<0.10)					
CC-21 (Duplicate of CC-17)	11/11/2015	Concrete	Surface	ND (<0.10)	0.23	ND (<0.10)					
CC-22 (Duplicate of CC-9)	11/11/2015	Concrete	Surface	ND (<0.10)	1.1	ND (<0.10)					
CC-23 (Duplicate of CC-14)	11/11/2015	Concrete	Surface	ND (<0.10)	0.95	ND (<0.10)					
CWC-1	11/11/2015	CMU	Surface	ND (<0.10)	0.44	ND (<0.10)					
CWC-2	11/11/2015	CMU	Surface	ND (<0.10)	0.46	ND (<0.10)					
CWC-3	11/11/2015	CMU	Surface	ND (<0.10)	ND (<0.10)	ND (<0.10)					
CWC-4	11/11/2015	CMU	Surface	ND (<0.10)	11	ND (<0.10)					
South Tow SC-1	er Transformer	r Room Sampl	es Surface	ND (<0.10)	0.29	ND (<0.10)					
				` '	, ,	, ,	` '	` ,	` '		` '
SC-2 SC-3	11/12/2015	Concrete	Surface	ND (<0.10)	0.16 0.12	ND (<0.10)					
SC-3	11/12/2015	Concrete	Surface	ND (<0.10)		ND (<0.10)					
SC-4 SC-5	11/12/2015	Concrete	Surface Surface	ND (<0.10) ND (<0.10)	ND (<0.10)	ND (<0.10) ND (<0.10)	ND (<0.10)	ND (<0.10) ND (<0.10)	ND (<0.10) ND (<0.10)	8.6	ND (<0.10) ND (<0.10)
SC-5 SS-5	11/12/2015	Concrete	.5	, ,	ND (<0.10)	, ,	ND (<0.10)	ND (<0.10)	` '	0.30	, ,
	11/12/2015	Soil		ND (<0.10)	ND (<0.10)	ND (<0.10)	ND (<0.10)	, ,	ND (<0.10)		ND (<0.10)
SC-6 SC-7	11/12/2015 11/12/2015	Concrete	Surface Surface	ND (<0.10) ND (<0.10)	16 0.20	ND (<0.10) ND (<0.10)					
SC-7	11/12/2015	Concrete	Surface	ND (<0.10)	0.40	ND (<0.10)					
SS-8	11/12/2015	Soil	.5	ND (<0.10)	ND (<0.10)	ND (<0.10)					
SC-9	11/12/2015	Concrete	Surface	ND (<0.10)	0.15	ND (<0.10)					
SS-9	11/12/2015	Soil	.5	ND (<0.10)	ND (<0.10)	ND (<0.10)					
SC-10	11/12/2015	Concrete	Surface	ND (<0.10)	ND (<0.10)	ND (<0.10)					
SS-10	11/12/2015	Soil	.5	ND (<0.10)	ND (<0.10)	ND (<0.10)					
SC-11 (Duplicate of SC-1)	11/12/2015	Concrete	Surface	ND (<0.10)	0.18	ND (<0.10)					
SWC-1	11/12/2015	CMU	Surface	ND (<0.10)	2.9	ND (<0.10)					
SWC-2	11/12/2015	CMU	Surface	ND (<0.10)	ND (<0.10)	ND (<0.10)					
SWC-3	11/12/2015	CMU	Surface	ND (<0.10)	0.12	ND (<0.10)					

Table 1: Summarized Concrete and Soil Analytical Results
North Campus Student Housing - McCarty Hall Replacement
Terracon Consultants Inc. (2015)

Sample ID	Date	Media	Depth (feet)	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	PCB-1268
North Tow	er Transforme	r Room Sampl	es								
NC-1	11/12/2015	Concrete	Surface	ND (<0.10)	0.30	ND (<0.10)					
NS-1	11/12/2015	Soil	.5	ND (<0.10)							
NS-1-2'	11/12/2015	Soil	2	ND (<0.10)							
NC-2	11/13/2015	Concrete	Surface	ND (<0.10)							
NS-2	11/13/2015	Soil	.5	ND (<0.10)	24	ND (<0.10)					
NS-2-2'	12/18/2015	Soil	2	ND (<0.10)							
NS-2-3'	12/18/2015	Soil	3	ND (<0.10)							
NC-3	11/13/2015	Concrete	Surface	ND (<0.10)							
NS-3	11/13/2015	Soil	.5	ND (<0.10)	3.7	ND (<0.10)					
NS-3-2'	12/17/2015	Soil	2	ND (<0.10)							
NS-3-3.5'	12/17/2015	Soil	3.5	ND (<0.10)							
NC-4	11/13/2015	Concrete	Surface	ND (<0.10)	1.3	ND (<0.10)					
NS-4	11/13/2015	Soil	.5	ND (<0.10)							
NC-5	11/12/2015	Concrete	Surface	ND (<0.10)							
NC-6	11/12/2015	Concrete	Surface	ND (<0.10)	0.60	ND (<0.10)					
NS-6	11/12/2015	Soil	.5	ND (<0.10)							
NC-7	11/12/2015	Concrete	Surface	ND (<0.10)	3.2	ND (<0.10)					
NS-7	11/12/2015	Soil	.5	ND (<0.10)							
NC-8	11/13/2015	Concrete	Surface	ND (<0.10)							
NS-8	11/13/2015	Soil	.5	ND (<0.10)	0.29	ND (<0.10)					
NC-9	11/13/2015	Concrete	Surface	ND (<0.10)							
NS-9	11/13/2015	Soil	.5	ND (<0.10)	2.0	ND (<0.10)					
NS-9-2'	12/18/2015	Soil	2	ND (<0.10)							
NS-9-3.5'	12/18/2015	Soil	3.5	ND (<0.10)							
NC-10	11/13/2015	Concrete	Surface	ND (<0.10)	1.4	ND (<0.10)					
NS-10	11/13/2015	Soil	.5	ND (<0.10)							
NC-11 (Duplicate of NC-7)	11/13/2015	Concrete	Surface	ND (<0.10)	2.8	ND (<0.10)					
NWC-1	11/13/2015	CMU	Surface	ND (<0.10)	2.3	ND (<0.10)					
NWC-2	11/11/2015	CMU	Surface	ND (<0.10)	1.5	ND (<0.10)					
NWC-3	11/13/2015	Concrete	Surface	ND (<0.10)	1.2	ND (<0.10)					
Equipment Blank	11/13/2015	Water	NA	ND (<0.10)							
Special Regu	lated Waste Le	evel		2	2	2	2	2	2	2	2

All concentrations presented in parts per million (mg/kg)

Special Regulated Waste ("State Special Waste") levels are >2 ppm (mg/kg) and <50 ppm (mg/kg)

Bold indicates analyte detected, **Bold** and shaded indicates analyte detected above Dangerous Waste "State Special Waste" designation level PCB - Polychlorinated biphenyl

Table 2 : Summarized Investigation Derived Waste Analytical Results
North Campus Student Housing - McCarty Hall Replacement
Terracon Consultants Inc. (2015)

Sample ID	Date	Media	Depth (feet)	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	PCB-1268
Concrete, Soil Drum	12/18/2018	Concrete / Soil	NA	ND (<0.10)	1.6	ND (<0.10)					
Water Drum	12/18/2018	Decon. Water	NA	ND (<0.10)							
Special Regulated Waste Level			2	2	2	2	2	2	2	2	

All concentrations presented in parts per million (mg/kg)

Special Regulated Waste ("State Special Waste") levels are >2 ppm (mg/kg) and <50 ppm (mg/kg)

Bold indicates analyte detected

PCB - Polychlorinated biphenyl

APPENDIX C – ANALYTICAL REPORTS AND CHAIN OF CUSTODY FORMS

November 30, 2015

Mr. Chad Kean Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043

Dear Mr. Kean,

On November 16th, 92 samples were received by our laboratory and assigned our laboratory project number EV15110106. The project was identified as your BA158014. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Rick Bagan

Laboratory Director

CLIENT CONTACT:

CERTIFICATE OF ANALYSIS

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-01
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/10/2015 10:41:00 AM

CLIENT SAMPLE ID CC-1 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS By	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	

			ANALYSIS AN	IALYSIS
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX	EPA-8082	82.0	11/23/2015	GAP
DCB	EPA-8082	104	11/23/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-0

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-02
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/10/2015 10:41:00 AM

CLIENT SAMPLE ID CS-1 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1260	EPA-8082	0.10	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	

			ANALYSIS ANALY	
SURROGATE	METHOD	%REC	DATE BY	
TCMX	EPA-8082	104	11/23/2015 G/	AP
DCB	EPA-8082	121	11/23/2015 G/	AP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106
Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-03

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/10/2015 11:23:00 AM

CLIENT SAMPLE ID CC-2 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP

			ANALISIS AN	IAL 1313
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX	EPA-8082	113	11/23/2015	GAP
DCB	EPA-8082	125	11/23/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-0

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-04
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/10/2015 11:23:00 AM

CLIENT SAMPLE ID CS-2 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN	IALYSIS BY	
ANALYTE PCB-1016	METHOD EPA-8082	RESULTS U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP	

			ANALISIS AN	IAL 1313
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX	EPA-8082	112	11/23/2015	GAP
DCB	EPA-8082	133	11/23/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106
Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-05

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 9:01:00 AM

CLIENT SAMPLE ID CS-2-2' WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP
PCB-1260	EPA-8082	1.8	0.10	1	MG/KG	11/23/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/23/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	101	11/23/2015 GAP
DCB	EPA-8082	120	11/23/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-0

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-06
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 9:14:00 AM

CLIENT SAMPLE ID CS-2-3' WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN Date	IALYSIS By
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP

			ANALYSIS AN	
SURROGATE	METHOD	%REC	DATE	BY
TCMX	EPA-8082	82.0	11/24/2015	GAP
DCB	EPA-8082	107	11/24/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-07

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/10/2015 11:20:00 AM

CLIENT SAMPLE ID CC-3 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS By	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	101	11/24/2015 GAP
DCB	EPA-8082	114	11/24/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-08

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/10/2015 11:20:00 AM

CLIENT SAMPLE ID CS-3 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANALYS DATE BY	IS
TCMX	EPA-8082	98.0	11/24/2015 GAI	Р
DCB	EPA-8082	117	11/24/2015 GAI	Р

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-09

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/10/2015 11:57:00 AM

CLIENT SAMPLE ID CC-4 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING	DILUTION	UNITS	ANALYSIS ANALYSIS			
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR		DATE	BY		
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP		
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP		
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP		
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP		
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP		
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP		
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP		
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP		

			ANALYSIS AN	AL 1313
SURROGATE	METHOD	%REC	DATE	BY
TCMX	EPA-8082	93.0	11/24/2015	GAP
DCB	EPA-8082	114	11/24/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-10

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/10/2015 11:57:00 AM

CLIENT SAMPLE ID CS-4 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	ALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	93.0	11/24/2015 GAP
DCB	EPA-8082	115	11/24/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-11

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/10/2015 12:38:00 PM

CLIENT SAMPLE ID CC-5 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN Date	IALYSIS By
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	89.0	11/24/2015 GAP
DCB	EPA-8082	106	11/24/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-12

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/10/2015 12:38:00 PM

CLIENT SAMPLE ID CS-5 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	ALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	102	11/24/2015 GAP
DCB	EPA-8082	122	11/24/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-13
CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/10/2015 1:18:00 PM

CLIENT SAMPLE ID CC-6 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING	DILUTION	UNITS	ANALYSIS ANALYSIS		
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	Oitilo	DATE	BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1260	EPA-8082	0.14	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	

			ANALYSIS ANALY	
SURROGATE	METHOD	%REC	DATE BY	Y
TCMX	EPA-8082	99.0	11/24/2015	GAP
DCB	EPA-8082	119	11/24/2015 C	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-14

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/10/2015 1:18:00 PM

CLIENT SAMPLE ID CS-6 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN Date	IALYSIS By
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP

			ANALYSIS AN	
SURROGATE	METHOD	%REC	DATE	BY
TCMX	EPA-8082	91.0	11/24/2015	GAP
DCB	EPA-8082	110	11/24/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-15

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/10/2015 1:59:00 PM

CLIENT SAMPLE ID CC-7 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS By
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1260	EPA-8082	0.37	0.10	1	MG/KG	11/24/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	113	11/24/2015 GAP
DCB	EPA-8082	136	11/24/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-16

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/10/2015 1:59:00 PM

CLIENT SAMPLE ID CS-7 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN Date	IALYSIS By
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	105	11/24/2015 GAP
DCB	EPA-8082	128	11/24/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-17
CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/10/2015 2:48:00 PM

CLIENT SAMPLE ID CC-8 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1260	EPA-8082	0.35	0.10	1	MG/KG	11/24/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP

			ANALISIS AN	IAL 1313
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX	EPA-8082	88.0	11/24/2015	GAP
DCB	EPA-8082	110	11/24/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106
Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-18

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/10/2015 2:48:00 PM

CLIENT SAMPLE ID CS-8 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS By	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY	
TCMX	EPA-8082	91.0	11/24/2015 GAP	
DCB	EPA-8082	111	11/24/2015 GAP	

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-19

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 8:26:00 AM

CLIENT SAMPLE ID CC-9 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN	IALYSIS BY	
ANALYTE PCB-1016	METHOD EPA-8082	RESULTS U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1260	EPA-8082	1.3	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANALY DATE BY	
TCMX	EPA-8082	104	11/24/2015 G.	iΑΡ
DCB	EPA-8082	127	11/24/2015 G.	iΑΡ

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106
Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-20

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 8:26:00 AM

CLIENT SAMPLE ID CS-9 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING	DILUTION	UNITS	ANALYSIS ANALYSIS		
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR		DATE	BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	98.0	11/24/2015 GAP
DCB	EPA-8082	121	11/24/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-21

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 11:42:00 AM

CLIENT SAMPLE ID CC-10 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING	DILUTION	UNITS	ANALYSIS ANALYSIS		
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1260	EPA-8082	0.72	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	

			ANALISIS AN	IAL 1313
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX	EPA-8082	80.0	11/24/2015	GAP
DCB	EPA-8082	118	11/24/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106
Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-22

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 11:42:00 AM

CLIENT SAMPLE ID CS-10 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP

			ANALYSIS ANALYSIS	
SURROGATE	METHOD	%REC	DATE BY	
TCMX	EPA-8082	96.0	11/24/2015 GAP	
DCB	EPA-8082	120	11/24/2015 GAP	

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-23
CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 11:39:00 AM

CLIENT SAMPLE ID CC-11 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1260	EPA-8082	0.24	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANAL DATE E	LYSIS BY
TCMX	EPA-8082	55.0	11/24/2015	GAP
DCB	EPA-8082	82.0	11/24/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-2

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-24
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 11:39:00 AM

CLIENT SAMPLE ID CS-11 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	NALYSIS BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	

			ANALYSIS AN	ALTOIO
SURROGATE	METHOD	%REC	DATE	BY
TCMX	EPA-8082	111	11/24/2015	GAP
DCB	EPA-8082	136	11/24/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106 Mountlake Terrace, WA 98043

ALS SAMPLE#: EV15110106-25

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 **COLLECTION DATE:** 11/11/2015 12:20:00 PM

CLIENT SAMPLE ID CC-12 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1260	EPA-8082	0.42	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	

			ANALYSIS ANALYSI	S
SURROGATE	METHOD	%REC	DATE BY	
TCMX	EPA-8082	82.0	11/24/2015 GAF	כ
DCB	EPA-8082	122	11/24/2015 GAF	>

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-26

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 12:20:00 PM

CLIENT SAMPLE ID CS-12 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING	DILUTION	UNITS	ANALYSIS AN		
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR		DATE	BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	

			ANALYSIS ANALYSIS	
SURROGATE	METHOD	%REC	DATE BY	
TCMX	EPA-8082	106	11/24/2015 GAP	
DCB	EPA-8082	134	11/24/2015 GAP	

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106
Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-27

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 12:24:00 PM

CLIENT SAMPLE ID CC-13 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1260	EPA-8082	0.27	0.10	1	MG/KG	11/24/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP

			ANALISIS AN	VALTOIO	
SURROGATE	METHOD	%REC	DATE	ВҮ	
TCMX	EPA-8082	103	11/24/2015	GAP	
DCB	EPA-8082	146	11/24/2015	GAP	

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-28
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 12:24:00 PM

CLIENT SAMPLE ID CS-13 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	

			ANALISIS AN	IAL 1313
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX	EPA-8082	112	11/24/2015	GAP
DCB	EPA-8082	138	11/24/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-29

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 1:12:00 PM

CLIENT SAMPLE ID CC-14 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS By
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1260	EPA-8082	1.2	0.10	1	MG/KG	11/24/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	104	11/24/2015 GAP
DCB	EPA-8082	134	11/24/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-30

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 1:12:00 PM

CLIENT SAMPLE ID CS-14 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANA DATE I	LYSIS BY
TCMX	EPA-8082	107	11/24/2015	GAP
DCB	EPA-8082	129	11/24/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT CONTACT:

CERTIFICATE OF ANALYSIS

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-3

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-31
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 1:11:00 PM

CLIENT SAMPLE ID CC-15 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP
PCB-1260	EPA-8082	0.84	0.10	1	MG/KG	11/24/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/24/2015	GAP

			ANALISIS AN	ANALTSIS ANALTSIS			
SURROGATE	METHOD	%REC	DATE	ВҮ			
TCMX	EPA-8082	83.0	11/24/2015	GAP			
DCB	EPA-8082	119	11/24/2015	GAP			

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106
Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-32

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 1:11:00 PM

CLIENT SAMPLE ID CS-15 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN Date	IALYSIS By
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANA DATE	LYSIS BY
TCMX	EPA-8082	80.0	11/25/2015	GAP
DCB	EPA-8082	131	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-33

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 1:55:00 PM

CLIENT SAMPLE ID CC-16 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN	IALYSIS BY	
ANALYTE PCB-1016	METHOD EPA-8082	RESULTS U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

			ANALISIS AN	ANALTOIS ANALTOIS		
SURROGATE	METHOD	%REC	DATE	ВҮ		
TCMX	EPA-8082	89.0	11/25/2015	GAP		
DCB	EPA-8082	129	11/25/2015	GAP		

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-34

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 1:55:00 PM

CLIENT SAMPLE ID CS-16 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	ALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	2.5	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANAL DATE B	
TCMX	EPA-8082	97.0	11/25/2015	GAP
DCB	EPA-8082	116	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-35

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 2:15:00 PM

CLIENT SAMPLE ID CC-17 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANIALVIE	METHOD	DECLU TO	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY	
ANALYTE	METHOD	RESULTS						
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	0.42	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

			ANALYSIS ANAL	
SURROGATE	METHOD	%REC	DATE B	3Y
TCMX	EPA-8082	102	11/25/2015	GAP
DCB	EPA-8082	119	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT CONTACT:

CERTIFICATE OF ANALYSIS

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106
Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-36

Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 2:15:00 PM

CLIENT SAMPLE ID CS-17 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING	DILUTION	UNITS	ANALYSIS AN	ΙΔΙ ΥςΙς	
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

			ANALYSIS ANA	ANALTOIS ANALTOIS		
SURROGATE	METHOD	%REC	DATE	BY		
TCMX	EPA-8082	98.0	11/25/2015	GAP		
DCB	EPA-8082	123	11/25/2015	GAP		

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-37 Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 3:11:00 PM

CLIENT SAMPLE ID CC-18 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	ALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	0.55	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	78.0	11/25/2015 GAP
DCB	EPA-8082	116	11/25/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-38

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 3:11:00 PM

CLIENT SAMPLE ID CS-18 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN	IALYSIS BY	
ANALYTE PCB-1016	METHOD EPA-8082	RESULTS U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY	3
TCMX	EPA-8082	121	11/25/2015 GAP	
DCB	EPA-8082	147	11/25/2015 GAP	

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-39

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 4:01:00 PM

CLIENT SAMPLE ID CC-19 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	0.72	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

			ANALISIS AN	ANALTOIS ANALTSIS		
SURROGATE	METHOD	%REC	DATE	ВҮ		
TCMX	EPA-8082	107	11/25/2015	GAP		
DCB	EPA-8082	128	11/25/2015	GAP		

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-40

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 4:01:00 PM

CLIENT SAMPLE ID CS-19 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

			ANALYSIS AN	ALYSIS
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX	EPA-8082	96.0	11/25/2015	GAP
DCB	EPA-8082	121	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-41

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 4:49:00 PM

CLIENT SAMPLE ID CC-20 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

			ANALISIS AN	ANALTOIS ANALTOIS		
SURROGATE	METHOD	%REC	DATE	ВҮ		
TCMX	EPA-8082	112	11/25/2015	GAP		
DCB	EPA-8082	138	11/25/2015	GAP		

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106
Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-42

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 4:49:00 PM

CLIENT SAMPLE ID CS-20 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

			ANALYSIS AN	
SURROGATE	METHOD	%REC	DATE	BY
TCMX	EPA-8082	96.9	11/25/2015	GAP
DCB	EPA-8082	123	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-43

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 2:15:00 PM

CLIENT SAMPLE ID CC-21 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			DEDODENIA	DU LITION		ANIAL VOIG ANIAL VOIG		
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	0.23	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

			ANALISIS AN	ANALTOIS ANALTOIS		
SURROGATE	METHOD	%REC	DATE	BY		
TCMX	EPA-8082	105	11/25/2015	GAP		
DCB	EPA-8082	127	11/25/2015	GAP		

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-44

Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: **CLIENT PROJECT:** BA158014 **COLLECTION DATE:** 11/11/2015 8:26:00 AM

CLIENT SAMPLE ID CC-22 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS By	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	1.1	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY	
TCMX	EPA-8082	91.6	11/25/2015 GAP	
DCB	EPA-8082	114	11/25/2015 GAP	

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-45

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 1:12:00 PM

CLIENT SAMPLE ID CC-23 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	0.95	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	90.1	11/25/2015 GAP
DCB	EPA-8082	121	11/25/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-46 Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 10:03:00 AM

CLIENT SAMPLE ID CWC-1 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	0.44	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

			ANALTSIS AN	ANALTOIS ANALTOIS		
SURROGATE	METHOD	%REC	DATE	ВҮ		
TCMX	EPA-8082	86.7	11/25/2015	GAP		
DCB	EPA-8082	106	11/25/2015	GAP		

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-4

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-47
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 10:44:00 AM

CLIENT SAMPLE ID CWC-2 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING	DILUTION	UNITS	ANALYSIS AN		
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR		DATE	BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	0.46	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

			ANALISIS AN	ANALTSIS ANALTSIS		
SURROGATE	METHOD	%REC	DATE	ВҮ		
TCMX	EPA-8082	108	11/25/2015	GAP		
DCB	EPA-8082	129	11/25/2015	GAP		

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-48
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 11:13:00 AM

CLIENT SAMPLE ID CWC-3 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN Date	NALYSIS BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	93.2	11/25/2015 GAP
DCB	EPA-8082	117	11/25/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-49

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 11:26:00 AM

CLIENT SAMPLE ID CWC-4 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING	DILUTION	UNITS	ANALYSIS AN	IALYSIS	
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR		DATE	BY	
PCB-1016	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1221	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1232	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1242	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1248	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1254	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1260	EPA-8082	11	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1268	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	

			ANALYSIS AN	IALYSIS
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX 10X Dilution	EPA-8082	141	11/30/2015	GAP
DCB 10X Dilution	EPA-8082	190 GS2	11/30/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

GS2 - Surrogate outside of control limits due to dilution.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-50

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 9:12:00 AM

CLIENT SAMPLE ID SC-1 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY			
ANALYTE	METHOD	RESULTS	LIMITS	FACION		DATE	ы			
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP			
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP			
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP			
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP			
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP			
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP			
PCB-1260	EPA-8082	0.29	0.10	1	MG/KG	11/25/2015	GAP			
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP			

SURROGATE	METHOD	%REC	ANALYSIS ANALYSI DATE BY	S
TCMX	EPA-8082	93.4	11/25/2015 GAP	>
DCB	EPA-8082	117	11/25/2015 GAP)

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-51

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 1:07:00 PM

CLIENT SAMPLE ID SC-2 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	ALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	0.16	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

			ANALISIS AN	IAL 1313
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX	EPA-8082	83.9	11/25/2015	GAP
DCB	EPA-8082	124	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-52

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 11:50:00 AM

CLIENT SAMPLE ID SC-3 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	0.12	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

			ANALISIS AN	IAL 1313
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX	EPA-8082	90.8	11/25/2015	GAP
DCB	EPA-8082	109	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-53
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 11:01:00 AM

CLIENT SAMPLE ID SC-4 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP
PCB-1221	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP
PCB-1232	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP
PCB-1242	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP
PCB-1248	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP
PCB-1254	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP
PCB-1260	EPA-8082	12	1.0	10	MG/KG	11/30/2015	GAP
PCB-1268	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP

			ANALYSIS AN	ALYSIS
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX 10X Dilution	EPA-8082	121	11/30/2015	GAP
DCB 10X Dilution	EPA-8082	170 GS2	11/30/2015	GAP

GS2 - Surrogate outside of control limits due to dilution.

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-54

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 10:11:00 AM

CLIENT SAMPLE ID SC-5 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	NALYSIS BY	
PCB-1016	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1221	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1232	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1242	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1248	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1254	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1260	EPA-8082	8.6	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1268	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS AN. DATE	ALYSIS BY
			44/00/0045	045
TCMX 10X Dilution	EPA-8082	121	11/30/2015	GAP
DCB 10X Dilution	EPA-8082	193 GS2	11/30/2015	GAP

GS2 - Surrogate outside of control limits due to dilution.

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-55

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 10:11:00 AM

CLIENT SAMPLE ID SS-5 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	NALYSIS BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	0.30	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANALY DATE BY	
TCMX	EPA-8082	81.5	11/25/2015 G	AP
DCB	EPA-8082	119	11/25/2015 G	AP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106
Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-56

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 9:15:00 AM

CLIENT SAMPLE ID SC-6 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP
PCB-1221	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP
PCB-1232	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP
PCB-1242	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP
PCB-1248	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP
PCB-1254	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP
PCB-1260	EPA-8082	16	1.0	10	MG/KG	11/30/2015	GAP
PCB-1268	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP

			ANALYSIS ANA	4L 1010
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX 10X Dilution	EPA-8082	123	11/30/2015	GAP
DCB 10X Dilution	EPA-8082	189 GS2	11/30/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

GS2 - Surrogate outside of control limits due to dilution.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-57

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 9:31:00 AM

CLIENT SAMPLE ID SC-7 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	DECIN TO	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN	NALYSIS BY	
PCB-1016	METHOD EPA-8082	RESULTS U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	0.20	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANALYS DATE BY	SIS
TCMX	EPA-8082	112	11/25/2015 GA	٩P
DCB	EPA-8082	141	11/25/2015 GA	٩P

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-5

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-58
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 10:33:00 AM

CLIENT SAMPLE ID SC-8 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING	DILUTION	UNITS	ANALYSIS AN		
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR		DATE	BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	0.40	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	100	11/25/2015 GAP
DCB	EPA-8082	125	11/25/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT CONTACT:

CERTIFICATE OF ANALYSIS

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-5

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-59
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 10:33:00 AM

CLIENT SAMPLE ID SS-8 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANALYS DATE BY	IS
TCMX	EPA-8082	105	11/25/2015 GA	Р
DCB	EPA-8082	131	11/25/2015 GA	Р

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-60

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 11:29:00 AM

CLIENT SAMPLE ID SC-9 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			DEDODTING	DULUTION		ANALVOIC AN	IAL VOIC	
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	0.15	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

			ANALTSIS AN	AL 1313
SURROGATE	METHOD	%REC	DATE	BY
TCMX	EPA-8082	93.9	11/25/2015	GAP
DCB	EPA-8082	115	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-61

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 3:13:00 PM

CLIENT SAMPLE ID SC-10 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS By
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	89.6	11/25/2015 GAP
DCB	EPA-8082	92.6	11/25/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-62

Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: **CLIENT PROJECT:** BA158014 **COLLECTION DATE:** 11/12/2015 3:13:00 PM

CLIENT SAMPLE ID SS-10 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING	DILUTION	UNITS	ANALYSIS AN	ΙΔΙ ΥςΙς	
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	93.2	11/25/2015 GAP
DCB	EPA-8082	94.7	11/25/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-63
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 9:12:00 AM

CLIENT SAMPLE ID SC-11 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	0.18	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	92.5	11/25/2015 GAP
DCB	EPA-8082	94.5	11/25/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-64

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 3:48:00 PM

CLIENT SAMPLE ID SWC-1 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING	DILUTION		ANALYSIS AN	INI VOIC	
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	2.9	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

			ANALYSIS ANAL	
SURROGATE	METHOD	%REC	DATE B'	Υ
TCMX	EPA-8082	93.4	11/25/2015	GAP
DCB	EPA-8082	95.2	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-65

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 4:17:00 PM

CLIENT SAMPLE ID SWC-2 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS By
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANALYSI DATE BY	S
TCMX	EPA-8082	92.8	11/25/2015 GAF	2
DCB	EPA-8082	93.2	11/25/2015 GAF	>

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-6

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-66
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 4:50:00 PM

CLIENT SAMPLE ID SWC-3 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS By	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	0.12	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

			ANALYSIS ANALY	
SURROGATE	METHOD	%REC	DATE BY	ľ
TCMX	EPA-8082	91.0	11/25/2015 G	GAP
DCB	EPA-8082	93.4	11/25/2015 G	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106
Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-67

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 6:14:00 PM

CLIENT SAMPLE ID NC-1 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING	DILUTION	UNITS	ANALYSIS AN		
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR		DATE	BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	0.30	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

			ANALYSIS ANA	ALTOIO
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX	EPA-8082	83.7	11/25/2015	GAP
DCB	EPA-8082	90.5	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-68
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 6:14:00 PM

CLIENT SAMPLE ID NS-1 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANAL' DATE B'	
TCMX	EPA-8082	89.3	11/25/2015	GAP
DCB	EPA-8082	92.6	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-69

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/13/2015 4:15:00 PM

CLIENT SAMPLE ID NC-2 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANAL DATE E	LYSIS BY
TCMX	EPA-8082	104	11/25/2015	GAP
DCB	EPA-8082	106	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-70 Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/13/2015 4:15:00 PM

CLIENT SAMPLE ID NS-2 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY	
PCB-1016	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1221	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1232	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1242	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1248	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1254	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1260	EPA-8082	24	1.0	10	MG/KG	11/30/2015	GAP	
PCB-1268	EPA-8082	U	1.0	10	MG/KG	11/30/2015	GAP	

			ANALTSIS AN	MAL 1010	
SURROGATE	METHOD	%REC	DATE	ВҮ	
TCMX 10X Dilution	EPA-8082	99.0	11/30/2015	GAP	
DCB 10X Dilution	EPA-8082	137	11/30/2015	GAP	

U - Analyte analyzed for but not detected at level above reporting limit.

www.alsglobal.com

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-71

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/13/2015 3:31:00 PM

CLIENT SAMPLE ID NC-3 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS By
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANA DATE	ALYSIS By
TCMX	EPA-8082	115	11/25/2015	GAP
DCB	EPA-8082	118	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-72

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/13/2015 3:31:00 PM

CLIENT SAMPLE ID NS-3 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING	DILUTION	UNITS	ANALYSIS AN	NAI YSIS		
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY		
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1260	EPA-8082	3.7	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		

			ANALISIS AN	IAL 1313
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX	EPA-8082	99.8	11/25/2015	GAP
DCB	EPA-8082	104	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-73

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/13/2015 1:48:00 PM

CLIENT SAMPLE ID NC-4 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	1.3	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

			ANALISIS AN	IAL 1313
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX	EPA-8082	103	11/25/2015	GAP
DCB	EPA-8082	103	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-74

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/13/2015 1:48:00 PM

CLIENT SAMPLE ID NS-4 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN	IALYSIS BY	
ANALYTE PCB-1016	METHOD EPA-8082	RESULTS U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANAL DATE E	LYSIS BY
TCMX	EPA-8082	99.3	11/25/2015	GAP
DCB	EPA-8082	100	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-75

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 6:56:00 PM

CLIENT SAMPLE ID NC-5 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN Date	NALYSIS BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	89.3	11/25/2015 GAP
DCB	EPA-8082	92.2	11/25/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-76

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 7:41:00 PM

CLIENT SAMPLE ID NC-6 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN	IALYSIS BY	
ANALYTE PCB-1016	METHOD	RESULTS	_	FACTOR	MG/KG	11/25/2015		
PCB-1016	EPA-8082	U	0.10	ı	IVIG/NG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	0.60	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

			ANALISIS AN	IAL 1313
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX	EPA-8082	103	11/25/2015	GAP
DCB	EPA-8082	109	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106
Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-77

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 7:41:00 PM

CLIENT SAMPLE ID NS-6 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS By
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANA DATE I	LYSIS BY
TCMX	EPA-8082	97.3	11/25/2015	GAP
DCB	EPA-8082	104	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-78

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 8:30:00 PM

CLIENT SAMPLE ID NC-7 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS By
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	3.2	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY	i
TCMX	EPA-8082	96.8	11/25/2015 GAP	
DCB	EPA-8082	110	11/25/2015 GAP	

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-79

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 8:30:00 PM

CLIENT SAMPLE ID NS-7 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING	DILUTION	UNITS	ANALYSIS AN	ΙΔΙ ΥςΙς	s	
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY		
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		

			ANALISIS AN	AL 1010
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX	EPA-8082	92.1	11/25/2015	GAP
DCB	EPA-8082	98.4	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-80

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/13/2015 10:55:00 AM

CLIENT SAMPLE ID NC-8 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANA DATE	ALYSIS BY
TCMX	EPA-8082	80.7	11/25/2015	GAP
DCB	EPA-8082	86.3	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-81

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 **COLLECTION DATE:** 11/13/2015 10:55:00 AM

CLIENT SAMPLE ID NS-8 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN	IALYSIS BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	0.29	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	51.1	11/25/2015 GAP
DCB	EPA-8082	56.4	11/25/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-8

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-82
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/13/2015 11:30:00 AM

CLIENT SAMPLE ID NC-9 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANIAI VTE			REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS ANALYSIS DATE BY			
ANALYTE PCB-1016	METHOD EPA-8082	RESULTS U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP		

SURROGATE	METHOD	%REC	ANALYSIS ANALYSIS DATE BY
TCMX	EPA-8082	49.8	11/25/2015 GAP
DCB	EPA-8082	53.0	11/25/2015 GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-83

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/13/2015 11:30:00 AM

CLIENT SAMPLE ID NS-9 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY			
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP			
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP			
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP			
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP			
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP			
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP			
PCB-1260	EPA-8082	2.0	0.10	1	MG/KG	11/25/2015	GAP			
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP			

SURROGATE	METHOD	%REC	ANALYSIS ANAL DATE B	
TCMX	EPA-8082	100	11/25/2015	GAP
DCB	EPA-8082	122	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-84

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/13/2015 12:10:00 PM

CLIENT SAMPLE ID NC-10 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

	METHOD	DE0111 TO	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN	IALYSIS BY	
ANALYTE PCB-1016	METHOD EPA-8082	RESULTS U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	1.4	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANALYSI DATE BY	IS
TCMX	EPA-8082	115	11/25/2015 GAF	Ρ
DCB	EPA-8082	140	11/25/2015 GAF	2

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-85

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/13/2015 12:10:00 PM

CLIENT SAMPLE ID NS-10 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS ANALYS DATE BY	SIS
TCMX	EPA-8082	114	11/25/2015 GA	٩P
DCB	EPA-8082	135	11/25/2015 GA	٩P

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-8

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-86
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/13/2015 12:18:00 PM

CLIENT SAMPLE ID NWC-1 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS By	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	2.3	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

			ANALYSIS ANALY	SIS
SURROGATE	METHOD	%REC	DATE BY	
TCMX	EPA-8082	117	11/25/2015 GA	AP
DCB	EPA-8082	136	11/25/2015 GA	AP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-8

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-87
CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/11/2015 11:11:00 AM

CLIENT SAMPLE ID NWC-2 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING	DILUTION	LINUTO	ANALYSIS AN	IVI AGIG	
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	1.5	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

			ANALYSIS ANALYS	IS
SURROGATE	METHOD	%REC	DATE BY	
TCMX	EPA-8082	120	11/25/2015 GAF	Р
DCB	EPA-8082	148	11/25/2015 GAF	Р

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-8

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-88
CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/13/2015 12:56:00 PM

CLIENT SAMPLE ID NWC-3 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN Date	NALYSIS BY	
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	1.2	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

			ANALISIS AN	IAL 1313
SURROGATE	METHOD	%REC	DATE	ВҮ
TCMX	EPA-8082	112	11/25/2015	GAP
DCB	EPA-8082	136	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-89

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 11:29:00 AM

CLIENT SAMPLE ID SS-9 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

			ANALYSIS AN	
SURROGATE	METHOD	%REC	DATE	BY
TCMX	EPA-8082	131	11/25/2015	GAP
DCB	EPA-8082	160 GS4	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

GS4 - Surrogate outside of control limits with a high bias. Associated compounds non-detect. No corrective action taken.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-90

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 6:30:00 PM

CLIENT SAMPLE ID NS-1-2' WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP

			ANALISIS AN	3 ANAL 1313	
SURROGATE	METHOD	%REC	DATE	ВҮ	
TCMX	EPA-8082	97.4	11/25/2015	GAP	
DCB	EPA-8082	126	11/25/2015	GAP	

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT CONTACT:

CERTIFICATE OF ANALYSIS

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-91
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 11/12/2015 8:30:00 PM

CLIENT SAMPLE ID NC-11 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

			REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN	IALYSIS BY	
ANALYTE PCB-1016	METHOD EPA-8082	RESULTS U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1260	EPA-8082	2.8	0.10	1	MG/KG	11/25/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	MG/KG	11/25/2015	GAP	

			ANALYSIS ANAL	
SURROGATE	METHOD	%REC	DATE B'	Y
TCMX	EPA-8082	94.0	11/25/2015	GAP
DCB	EPA-8082	140	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15110106 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-9

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15110106-92
Chad Kean DATE RECEIVED: 11/16/2015

CLIENT CONTACT: Chad Kean DATE RECEIVED: 11/16/2015
CLIENT PROJECT: BA158014 COLLECTION DATE: 11/13/2015 4:33:00 PM

CLIENT SAMPLE ID Equip. Method Blank WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS By	
PCB-1016	EPA-8082	U	0.10	1	UG/L	11/23/2015	GAP	
PCB-1221	EPA-8082	U	0.10	1	UG/L	11/23/2015	GAP	
PCB-1232	EPA-8082	U	0.10	1	UG/L	11/23/2015	GAP	
PCB-1242	EPA-8082	U	0.10	1	UG/L	11/23/2015	GAP	
PCB-1248	EPA-8082	U	0.10	1	UG/L	11/23/2015	GAP	
PCB-1254	EPA-8082	U	0.10	1	UG/L	11/23/2015	GAP	
PCB-1260	EPA-8082	U	0.10	1	UG/L	11/23/2015	GAP	
PCB-1268	EPA-8082	U	0.10	1	UG/L	11/23/2015	GAP	

SURROGATE	METHOD	%REC	ANALYSIS ANA DATE	ALYSIS By
TCMX	EPA-8082	60.0	11/23/2015	GAP
DCB	EPA-8082	88.0	11/23/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS SDG#: EV15110106 Mountlake Terrace, WA 98043

WDOE ACCREDITATION:

C601

CLIENT CONTACT: Chad Kean **CLIENT PROJECT:** BA158014

LABORATORY BLANK RESULTS

MBLK-11242015 - Batch R265464 - Soil by EPA-8082

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	QUAL UNITS	LIMITS	DATE	BY
PCB-1016	EPA-8082	U	MG/KC	0.10	11/24/2015	GAP
PCB-1221	EPA-8082	U	MG/KC	0.10	11/24/2015	GAP
PCB-1232	EPA-8082	U	MG/KC	0.10	11/24/2015	GAP
PCB-1242	EPA-8082	U	MG/KC	0.10	11/24/2015	GAP
PCB-1248	EPA-8082	U	MG/KC	0.10	11/24/2015	GAP
PCB-1254	EPA-8082	U	MG/KC	0.10	11/24/2015	GAP
PCB-1260	EPA-8082	U	MG/KC	0.10	11/24/2015	GAP
PCB-1268	EPA-8082	U	MG/KC	0.10	11/24/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

MBLK-11252015 - Batch R265459 - Soil by EPA-8082

					REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	QUAL	UNITS	LIMITS	DATE	BY
PCB-1016	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP
PCB-1221	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP
PCB-1232	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP
PCB-1242	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP
PCB-1248	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP
PCB-1254	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP
PCB-1260	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP
PCB-1268	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

MBLK-265553 - Batch R265553 - Soil by EPA-8082

					REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	QUAL	UNITS	LIMITS	DATE	BY
PCB-1016	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP
PCB-1221	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP
PCB-1232	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP
PCB-1242	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP
PCB-1248	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP
PCB-1254	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP
PCB-1260	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP
PCB-1268	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

Page 94

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 425-356-2600 FAX 425-356-2626

CLIENT: Terracon DATE: 11/30/2015

21905 - 64th Ave W, Suite 100 ALS SDG#: EV15110106

Mountlake Terrace, WA 98043 WDOE ACCREDITATION: C601

CLIENT CONTACT: Chad Kean CLIENT PROJECT: BA158014

LABORATORY BLANK RESULTS

MBLK-265564 - Batch R265564 - Soil by EPA-8082

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	QUAL UNITS	LIMITS	DATE	BY
PCB-1016	EPA-8082	U	MG/KG	0.10	11/25/2015	GAP
PCB-1221	EPA-8082	U	MG/KG	0.10	11/25/2015	GAP
PCB-1232	EPA-8082	U	MG/KG	0.10	11/25/2015	GAP
PCB-1242	EPA-8082	U	MG/KG	0.10	11/25/2015	GAP
PCB-1248	EPA-8082	U	MG/KG	0.10	11/25/2015	GAP
PCB-1254	EPA-8082	U	MG/KG	0.10	11/25/2015	GAP
PCB-1260	EPA-8082	U	MG/KG	0.10	11/25/2015	GAP
PCB-1268	EPA-8082	U	MG/KG	0.10	11/25/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

MBLK-265573 - Batch R265573 - Soil by EPA-8082

					REPORTING	ANALYSIS	ANALYSIS	
ANALYTE	METHOD	RESULTS	QUAL	UNITS	LIMITS	DATE	BY	
PCB-1016	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP	
PCB-1221	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP	
PCB-1232	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP	
PCB-1242	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP	
PCB-1248	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP	
PCB-1254	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP	
PCB-1260	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP	
PCB-1268	EPA-8082	U		MG/KG	0.10	11/25/2015	GAP	

U - Analyte analyzed for but not detected at level above reporting limit.

MBLK-11232015 - Batch R265466 - Water by EPA-8082

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	QUAL UNITS	LIMITS	DATE	BY
PCB-1016	EPA-8082	U	UG/L	0.10	11/23/2015	GAP
PCB-1221	EPA-8082	U	UG/L	0.10	11/23/2015	GAP
PCB-1232	EPA-8082	U	UG/L	0.10	11/23/2015	GAP
PCB-1242	EPA-8082	U	UG/L	0.10	11/23/2015	GAP
PCB-1248	EPA-8082	U	UG/L	0.10	11/23/2015	GAP
PCB-1254	EPA-8082	U	UG/L	0.10	11/23/2015	GAP
PCB-1260	EPA-8082	U	UG/L	0.10	11/23/2015	GAP
PCB-1268	EPA-8082	U	UG/L	0.10	11/23/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

Page 95

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 425-356-2600 FAX 425-356-2626

CLIENT: Terracon

21905 - 64th Ave W, Suite 100

Mountlake Terrace, WA 98043

ALS SDG#:

DATE:

11/30/2015 EV15110106

WDOE ACCREDITATION: C601

CLIENT CONTACT: CLIENT PROJECT: Chad Kean BA158014

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: R265459 - Soil by EPA-8082

SPIKED COMPOUND	METHOD	%REC	RPD QUAL	ANALYSIS Date	ANALYSIS BY
PCB-1016 - BS	EPA-8082	109		11/25/2015	GAP
PCB-1016 - BSD	EPA-8082	117	7	11/25/2015	GAP
PCB-1260 - BS	EPA-8082	105		11/25/2015	GAP
PCB-1260 - BSD	EPA-8082	111	6	11/25/2015	GAP

ALS Test Batch ID: R265464 - Soil by EPA-8082

SPIKED COMPOUND	METHOD	%REC	RPD QUAL	ANALYSIS DATE	ANALYSIS BY
PCB-1016 - BS	EPA-8082	103		11/24/2015	GAP
PCB-1016 - BSD	EPA-8082	115	11	11/24/2015	GAP
PCB-1260 - BS	EPA-8082	99.0		11/24/2015	GAP
PCB-1260 - BSD	EPA-8082	111	11	11/24/2015	GAP

ALS Test Batch ID: R265553 - Soil by EPA-8082

SPIKED COMPOUND	METHOD	%REC	RPD QUAL	ANALYSIS DATE	ANALYSIS BY
PCB-1016 - BS	EPA-8082	51.0		11/25/2015	GAP
PCB-1016 - BSD	EPA-8082	52.5	3	11/25/2015	GAP
PCB-1260 - BS	EPA-8082	58.0		11/25/2015	GAP
PCB-1260 - BSD	EPA-8082	51.9	11	11/25/2015	GAP

ALS Test Batch ID: R265564 - Soil by EPA-8082

SPIKED COMPOUND	METHOD	%REC	RPD QUAL	DATE	ANALYSIS BY
PCB-1016 - BS	EPA-8082	61.5		11/25/2015	GAP
PCB-1016 - BSD	EPA-8082	61.8	1	11/25/2015	GAP
PCB-1260 - BS	EPA-8082	76.1		11/25/2015	GAP
PCB-1260 - BSD	EPA-8082	75.5	1	11/25/2015	GAP

ALS Test Batch ID: R265573 - Soil by EPA-8082

SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	ANALYSIS Date	ANALYSIS BY
PCB-1016 - BS	EPA-8082	106			11/25/2015	GAP
PCB-1016 - BSD	EPA-8082	141	28	SR1	11/25/2015	GAP
PCB-1260 - BS	EPA-8082	101			11/25/2015	GAP
PCB-1260 - BSD	EPA-8082	138	31	SR1	11/25/2015	GAP

SR1 - RPD outside of control limits.

Page 96

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 425-356-2600 FAX 425-356-2626

CLIENT: 11/30/2015 Terracon DATE:

21905 - 64th Ave W, Suite 100 ALS SDG#: EV15110106

Mountlake Terrace, WA 98043 WDOE ACCREDITATION: C601

CLIENT CONTACT: Chad Kean **CLIENT PROJECT:** BA158014

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: R265466 - Water by EPA-8082

SPIKED COMPOUND	METHOD	%REC	RPD (QUAL	ANALYSIS Date	ANALYSIS BY
PCB-1016 - BS	EPA-8082	104			11/23/2015	GAP
PCB-1016 - BSD	EPA-8082	121	15		11/23/2015	GAP
PCB-1260 - BS	EPA-8082	86.0			11/23/2015	GAP
PCB-1260 - BSD	EPA-8082	100	15		11/23/2015	GAP

APPROVED BY

Laboratory Director

ALS Environmental 8620 Holly Drive, Suite 100 Everett, WA 98208 Phone (425) 356-2600 Fax (425) 356-2626 http://www.alsglobal.com

Laboratory Analysis Request Chain Of Custody/

(Laboratory Use Only)

ALS Job#

4010/151173

5

Date 11/16/15 Page

	THEFT IN COOR SOURCE	1		1	1	T	1	1			
	BECEINED IN GOOD CONDILIONS	ļ		~ (~1	~	\sim 1	~/	~ /	~	$\overline{}$
	NUMBER OF CONTRINERS	8	3	8	3	4	18	18	18	18	18
S				:							
ecif											
જી											
OTHER (Specify)									·		
팅											
\dashv	TCLP-Metals VOA Semi-Vol Pest Herbs										
ı	Metals Other (Specify)										
ŀ	☐ JAT ☐ 109 ħ9 ☐ 8-AROR ☐ 8-AOTM-alsten										
ŀ		7			<u></u>	<u></u>					X
ł	Polycyclic Aromatic Hydrocarbons (PAH) by EPA-8270 SIM						< \				
ł	Semivolatile Organic Compounds by EPA 8270										
ŀ											
ŀ											
ŀ											
SUESTED											
SI											
ANALYSIS REQUESTED	MTBE by EPA-8021 □ EPA-8260 □										
	BTEX by EPA-8021										
SIS	NWTPH-GX										
F	XQ-H4TWN										
¥	NWTPH-HCID										
	DO D										
		_	7	\sim	5	N	9	~	0	9	2
		(
	48043 48043 TYPE										
						L_					_
	M 20 12 1		57								
	6 E E	- V	7		_	W	59	12			
	MARIL: C. PAS.	1/0			N	Z'	11.	1/0			K
7	\$ \$	111			الم	=	1//	1/1			7
84158014	Lead Seyther Soy Fax E-MAIL: E-MAIL:										
8						•	` .				
Ś						3					
4	1905 6 10 17 1-33			d	2	7					_
∞	はこれは、一一一に	-	1	k.	1	1	1	4	~	7.	
Ö			5		i		\	(,	1		7
PROJECT ID:	REPORT TO COMPANY: PROJECT MANAGER: ADDRESS: PHONE: 425 PHONE: 425 PO. #: INVOICE TO COMPANY: ATTENTION: ADDRESS: ADDRESS: SAM	じ	-57°	300	4.05	5. 05	ن	じ	Ü	22	Ü
PRC	REPOR COMPLETE OF	-	2.	رى د	4.	5.	9	7.	œ	9.	10

SPECIAL INSTRUCTIONS

11/4/1/1	1.1 51/21/11
ny Daje, Time):	J Peracon
EQ 🖟	7
E.	H.
Pompa	
\$	4
rures (Name, 1	By:

Relinquished By: A Toracon	11/10/115	1:10
Received By Shawn Robinson Als	51/9//11	1:10 pm

2. Refinquished By: Received By:

OTHER	Specify: National	7870	1	
nalysis	SAME	DAY	/sis	
nic A	-		Analy	SAME
norga	٥		rbon	-
s & 1	c		droca	ო
etal	$\overline{}$	_	ž	
Šί	Fr.	Λ	∞	2
Ģrganic ,	10	Standard	Fuels	
	Organic, Metals & Inorganic Analysis	Specify: No	Specify: No	Specify: No

Standard

ity: National Ž *Turnaround request less than standard may incur Rush Charges

ALS Environmental 8620 Holly Drive, Suite 100 Everett, WA 98208 Phone (425) 356-2600 Fax (425) 356-2626 http://www.alsglobal.com

Laboratory Analysis Request

Chain Of Custody/

(Laboratory Use Only)

ALS Job#

ŏ

16/15 age

AVIS110106

	BECEINED IN GOOD CONDILIONS										
	NUMBER OF CONTAINERS	7	7	3	8	7	7	3	7	3	Ø
						J					
3											
ecif											
Š											
OTHER (Specify)											
의									-		
ŀ	TCLP-Metals O'Net Openity)										
	Metals-MTCA-5 ☐ RCRA-8 ☐ Pri Pol ☐ TAL ☐ Metals Other (Specify)										
ŀ	CSD Pesticides		~		<u></u>		$\overline{}$		\		<u> </u>
	Polycyclic Aromatic Hydrocarbons (PAH) by EPA-8270 SIM	\frown				\langle	\wedge				
	Semivolatile Organic Compounds by EPA 8270	MTBE by EPA-802 Halogenated Volati Volatile Organic Cd Boby EPA Semivolatile Organic Cd									
ł	EDB \ EDC p\ Eby 8560 (soil)										11/15 8:26 7 19 X
Ì	EDB / EDC by EPA 8260 SIM (water)										
	Volatile Organic Compounds by EPA 8260										
川	Halogenated Volatiles by EPA 8260										
ANALYSIS REQUESTED	MTBE by EPA-8021 □ EPA-8260 □										
	r208-APT v EPA-8021										
SIS	ИМТРН-СК										
	XQ-H4TWN										
₹	MMLbH-HCID										
	LAB#	//	7/	/3	<i>h/</i>	15	9/	77	81	19	20
	m m	>									
	ΤΥPE	B									A
•		11/10/15 12:38 offer	Ø	8	00	29	29	8	8	9	و
	TIME	2	12:38	13:18	13:18	13:59	13:59	84:41	14:48	3:2	A
		151	_	1	_	1	_	-	/	5 2	
	FAX: E-MAIL: DATE	101					-		A	///	-
		11								11/	
	SAMPLE I.D.	5	8	e	9	£	×	8	8	9	5
		5-2	١	(1	ı					١
PROJECT ID:	AT TO ANNY: GER: GER: ESSS: ESSS: TION:	7	5,	1	CS	5. C.C	6. CS-	7. C.C.	65-	- 77° 6	7
PROJE	REPORT TO COMPANY: PROJECT MANAGER: ADDRESS: PHONE: PO. #: INVOICE TO COMPANY: ATTENTION:	<u> </u>	2.	3.	4.	5. C	6.	7. C	8.	_{9.} C	10.0 S

SPECIAL INSTRUCTIONS

	0	
•	1.1	į
		7
1	2	9
/ /	0.	"
-	2	0
	2	4
	2	,
;;	1	9
<u>Ĕ</u>)	D	3
ate,	1	3
~		Y = 7
ď, Ž	X	~
Bhany, P.	1 /h	on h
, company, Date, Time):	1/h/1	rawn k
lame,	1/h/1/8" /	Shawn h
lame,	ed By: 1/4//	By: Shawin h
lame,	quished By:	ived By: Shawin I
je,	Relinquished By:	Received By: Shawn I

2. Relinquished By: Received By:

SAME 1 က 10 Slandard

Organic, Metals & Inorganic Analysis

]	sis	
	Analysis	SAME
]	drocarbon /	-
]	/droce	က
5	uels & Hy	5
andard	Fue	

*Turnaround request less than standard may incur Rush Charges

TURNAROUND REQUESTED in Business Days*

Specify:

ALS Environmental 8620 Holly Drive, Suite 100 Everett, WA 98208 Phone (425) 356-2600

PROJECT ID: REPORT TO COMPANY: PROJECT MANAGER:

ADDRESS:

P.O. #: INVOICE TO COMPANY:

PHONE:

ATTENTION: ADDRESS:

က်

4.

5 ø.

Laboratory Analysis Request Chain Of Custody/

(Laboratory Use Only)

ALS Job#

	Everett, WA 98208 Phone (425) 356-2600			Labo	Ta	Ď	γ	oratory Analysis Request	ysi	S	ed	neš	ĭ				EV/S	FN15110106	90		
MANASIS REQUESTED MANABER OF CONTAINERS MANASIS REQUESTED MANASIS REASON READ MANASIS	zə) əəb-zəzə :tp://www.alsglobal.com					:									ate	///	9/15 _{Page}		\ \ \	Jt 16	
		•			Ą	\LYS		OUE	STEL								OTHER ((Specify)			
		(<i>V</i>								
	DC	3											NIS 04		JAT	Herb					
						·						9270		€		tsəc					j
						-						EPA 8		308\r8	o9 h9	<u> </u>	•				NOL
	FAX:							<u> </u>			vater)	iqs pì		308 Ac		loV-im				SH	
	E-MAIL:							S8-A¶∃						∃ by EF	8-AAO	198				======================================	
1 1 1 1 1 1 1 1 1 1		:	ē				10							sə						COM	
TWE TYPE LAB# WITH					H-HCID									bioitse9 🗌						BER OF	
5 142 other 2 139 22 139 23 312 25 312 30	DATE	TIME	TYPE	LAB#	TWN									(4)						MUN	
:42 22 X :39 23 X :39 24 X :39 25 X :39 25 X :30 25 :30 25 :30 25 X	151/11/11		other	2/										X						, <i>A</i>	
		1:42	_	22										X						, 0	~
		1:39		23																<i>CP</i>	
12:20 25 X X X X X X X X X X X X X X X X X X		1:39		λk										X						69	-/
12:24 25 X X X X X X X X X X X X X X X X X X		2:20		SC										X						6	/
12:24 27 X 12:12 29 X 13:12 23 X	71	2:30		36						-				\times						-8	~!
12:12 X X X X X X X X X X X X X X X X X X X		2:24		27										X						18	
13:12 X 30 X	91	he:t		38										×						0	~
13:12 \$\psi \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		3;12		29										X						18	()
	_	3:12	A	30		•								X						8	_,

g	2
7	ξ
È	_
ί)
-	2
H	_
ď	2
=	=
7	
đ	5
ñ	Ú
Ö	Ļ

2. Refinquished By: _ Received By:__

TURNAROUND REQUESTED in Business Days* organic Analysis	2 1 sawe Specify:	oon Analysis
TURNAROUNE Organic, Metals & Inorganic Analysis	10 (5) 3	Fuels & Hydrocarbon Analysis 5 3 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
01:1 511	11/6/15 1:10	
SIGNATURES (Name, Opmpany, Date, Time):	Received By: Struin Polender A.S.	

*Turnaround request less than standard may incur Rush Charges

5 Standard

ALS Environmental 8620 Holly Drive, Suite 100 Everett, WA 98208 Phone (425) 356-2600 Fax (425) 356-2626 http://www.alsglobal.com

dy/	Request
Of Custo	Analysis F
Chain	oratory

(Laboratory Use Only)

ALS Job#

ð

Date

90/0//5/12

	ŞNOITIO	CONI	000E	D IN C	EIVE	BEC										
	S	INER	4TNO;	OE C	NBEL	IUN	8	8	B	B	\mathcal{L}	3	3	7	Z	て
city)																
Spe																
OTHER (Specify)																
OIF																
	□ sdreH □ tseP □ loV-	-im92	☐ AO\	/	stəM-c	TCLF										
			(yìi:	er (Spec	dtO el	Meta										-
				S-AC				× /								
	(PA9) by EPA-8270 SIM						X	<u>×</u> ,	X	<u> </u>	X	X	×	X	X	\times
	DY EPA 8270 MI2 0708-8270 SIM															
	0200 ¥d3 14			by EPA												
	:et)	tsw) Mi	8260 5	Py EPA	/ EDC	ED8										
(0928 Aq	as by E	unodw	oO oins	giO əli	Volat		**								
SIEL	0:	928 Aq	les by E	itsloV b	genate	Haloi										L
JUE		0928-∀		-S08-A¶												
, ME				1208-Ac												
ANALYSIS REQUESTED					(D-Hd.											·
NAL V)H-Hd											
		Ţ														
						LAB#	31	32	33	34	35	36	37	38	39	5
							J			,	,			,		
						TYPE	Other									4
						\vdash		_	2	প	5	70	_		_	•
-						TIME	13:1	13:1	13,55	3:5	1:1:	1:17	11:5	5:1	5:0	10:91
						\vdash	5		<u> </u>	CS - 16 13:55 34 CS - 16 13:55 34 CC - 17 14:15 35 CC - 18 15:11 37 CS - 18 15:11 33 CC - 19 16:01 39	2					
		AF.:				DATE	9//11/									4
	1	FA E-MAIL:					$ \hat{=} $									Y
					!											
						<u>آ</u>		10	2	0	£	7	∞	80	6	6
	1/8/					SAMPLE I.D	1	15	1) (1 -	-	_	1	-	_
						SAM	١,	1	1	1	, \	\ \^			ا ۱	7
PROJECT ID:	REPORT TO COMPANY: PROJECT MANAGER: ADDRESS:	<u>ان</u> ي	INVOICE TO COMPANY:	ATTENTION:	[22]		-77	11	0	7	2	Ü	7	7	7	(
PRO.L	REPORT TO COMPANY: PROJECT MANAGER: ADDRESS:	PHONE:	COMF	ATTENTION	<u>ל</u>		~ -	2. (3.	4	5.	9.	7. (8.	6	9

S	
NO.	
Š	
NST TST	
H H	l
PECI	l
$\overline{\Omega}$	ı

111111	con 11/16/13	///
pmpany, Date, Time):	14 1 Jelle	101
Vame, opn	<u>.</u> ∴	70
SIGNATURES (Name, (1. Relinguished By:	-

Received By:__

Received By:

TURNAROUND REQUESTED in Business Days* nanic Analysis OTHER: Specify: Organic, Metals & Inorganic Analysis Fuels & Hydrocarbon Analysis -7 က 5 Standard 5 10 Standard Mach 16Known 2. Relinquished By:

*Turnaround request less than standard may incur Rush Charges

ALS Environmental 8620 Holly Drive, Suite 100 Everett, WA 98208 Phone (425) 356-2600 Fax (425),356-2626

PROJECT ID: REPORT TO COMPANY: PROJECT MANAGER:

ADDRESS:

Chain Of Custody/

ett 2	2		Labo	oratory Analysis Request	ory /	Inal	ysis	Re,	dne	st					9010115112	115	70	90		
(425) 356-2626 http://www.alsglobal.com	al.com											Date_	1/1	3/15	Page	\mathcal{N}		ď	0	7 1
JECT ID:				ANALYSIS		REQUESTED	STED							ОТ	OTHER (Specify	pecify			l	П
DRT TO PANY:																				
JECT AGER:										VIS 02		□ JAT	Herb							
HESS: /											(tsə							
76,0			,					0070			3808X1	log ing	d [_j							IONS
NE: FAX:	ن					<u></u> 09					808 A		loV-in						SH	NDIL
E-MAIL:						928-A					Ч∃ үс] 8-A{	ne2						INE	00
NCE TO PROPERTY:						E						BCF							ATN(000
NTION:											səpi			_					E CC	N CC
RESS:				-DX -HCID		3-A93 v -A93 v	V bets	Organic I yd OO	DC p	atile Or norA oi	oite99 (NTCA-	Other (S						EB O	ΛED Ι
											_(A-sle							an	NEC
SAMPLE I.D. DATE	E TIME	TYPE	LAB#	LWN	LMN						ECB	steM		-					IUN	DBR
51/11/11	64:91 5	Other	//								X								7	
cs-20	16:49		42								X								7	
20-21	14:15	-	Eh								X								Z	
26-22	96:8		hh							,	\times								of	
16-23	- 13:12		Σ'n								X								3	
/11/11 1-JMJ	11/11/15 10:03		9/1								X								R	
CWC-2	10:44		Lh								×								3	

INVOICE TO COMPANY: ATTENTION:

PHONE P.O. #: ADDRESS:

က်

U,
7
$\overline{}$
\sim
=
<u>, </u>
O
<u> </u>
≂
Ē
-
'n
깢
ž
ž
≅.
≅.
N N
≅.
≅.
≅.
≅.

55

11/2/15 9:12

11:13 98:11

M

B. CWCI

9. CMC -

6. CWC 1

7. CWC-

7 37 3 4 3	6//9//	
Time):	kraca 1	
Company, Date, 1	X-/////-X	
SIGNATURES (Name, C	I. Relinquished By:	U

7	
ارک	
~	
	l
1	
7	
7	1
0	
1/2	
7	
η,	
3	
	ı
\ \	
)	
9	
10	
na	
una	
bus	
Chus	
Colum	
n Kabura	
n Ral	
wn Robers	

Received By:

OTHER:	Specify:
llysis	SAME
Ana	<u></u>
anic	<u> </u>
orga	2
8 -	
als	က
Σ	2
nic,	_
Orgal	10
	rganic, Metals & Inorganic Analysis OTHI

7

Fuels & Hydrocarbon Analysis

9

Turnaround request less than standard may incur Rush Charges

ALS Environmental 8620 Holly Drive, Suite 100 Everett, WA 98208 Phone (425) 356-2600 Fax (425) 356-2626 http://www.alsglobal.com

	Rednest
	n b
ď	ě
0	S
ıst	Si
ರ	ay
Ö	Ž
_	y
ā	o
$\frac{1}{2}$	rat
	<u>o</u>
	at
	_

(Laboratory Use Only)

ALS Job#

4010/151177

ŏ

/15 Page_

	RECEIVED IN GOOD CONDITION?	I									
	NUMBER OF CONTAINERS	3	3	3	3		3	3	3	1	3
										·	
ecit						-			-		
dS)											
OTHER (Specify)											
Q											
	TCLP-Metals VOA Semi-Vol Pest Herbs										
	Metals Other (Specify)	<u> </u>									
	Metals-MTCA-5 ☐ RCRA-8 ☐ Pri Pol ☐ TAL ☐										. /
	(CB) Pesticides Dy EPA 8081(8082)	lpha	X	X	\sim	\times	\times	\times	\times	\times	X
	Polycyclic Aromatic Hydrocarbons (PAH) by EPA-8270 SIM	-									
	EDB / EDC by EPA 8260 (soil) Semivolatile Organic Compounds by EPA 8270	!									
		_									
	Volatille Organic Compounds by EPA 8260 EDB / EDC by EPA 8260 SIM (water)	<u> </u>									
	Halogenated Volatiles by EPA 8260	!					-				
EST	MTBE by EPA-8021 EPA-8260	!									
E E	BTEX by EPA-8021										
IS R	ХЭ-Н4ТW	├									
LYS	XQ-H4TWN	 									
ANALYSIS REQUESTED	NWTPH-HCID										
	#										
		5	52	23	hS	25	25	57	25	59	9
		ļ		Í	J	ŕ	,		1		
	TYPE	9 Jeles									<i>←</i>
		10	0		_				N A	٨٨	,
	TIME	12/15/13:07	11 550	10:11	10:11	11:01	d:15	9:31	10:33	25101	PC: =
		12	11	11	16	10	6	9	10	10	=
	ATE ATE	415									
	FAX: E-MAIL: DATE										A
	9										
		۱,	. ^		Ŋ	2	9	K	8	8	0
	SAMPLE I.D	18	M	7	1	1	7 -	١	~	- \$	
Ä	SAM SAM	1	(1	J	U	S	J	(1	١,	1	1
ECT	EPORT TO COMPANY: ROJECT ANAGER: DDRESS: O. #: HONE: O. #: COMPANY: TTENTION: DDRESS: SDDRESS:	1	8	Š	V	N	2	2	50	55	7
ROJ	EPORT ROJEC NANAGE DDRES UVOICE COMPAI TTENTI	<u> </u>] _{a:}	یہ ا		٠	`. ا	ļ <u>,</u> .			<u>.</u>

മ
ó
Ħ,
್ಷ
Œ
2
ļ
증
잂
77

nyy, Pate, Time):	A Terracen 11/16/15	Robinar AU 11/16/15
E		(
Š	29.	1
SIGNATURES (Name, 0	. Relinquished By:	Received By:

01./	1.10 pm
C//a//	51/91/11
estaces II	an AU
12 10	1 losen
1	Law

TURNAROUND REQUESTED in Business Days* nanic Analysis OTHER: pecify:

	f

*Turnaround request less than standard may incur Rush Charges

Received By:

2. Relinquished By:

ALS Environmental 8620 Holly Drive, Suite 100 Everett, WA 98208 Phone (425) 356-2600 Fax (425) 356-2626 http://www.alsglobal.com ALS

Chain Of Custody/ Laborator

	st
Of Custody/	Analysis Request

(Laboratory Use Only)

ŏ

 $\mathcal{L}_{\mathsf{Page}}$

SAMPEID	1			č	LIONS	LION	၀၁	aoc	N C	ED II	INI3:	BEC										
PARTY PART	ļ												7	3	_	7	7	7	K	d	7	8
																		J				-0
	<u></u>																					
	ğ								-													
	휘																					
Marias Office Paragon	悥					,														-		
MATPH-HCID MATPH-HCID Material-MTCA-5 RCRA-8 PPR 8081/8083 Positional and Part 8200 SIM PR 1/3/15 1/3/15	٦	_ sq	Hert	tsə ₍	1 <u></u>	loV-im	əS)Λ [_ sls	t o M-α	тсг										
1 1 2 2 2 2 2 2 2 2								λ)	jpecif	S) ıər	IIO el	Meta										
1 2 2 2 2 2 2 2 2 2	Ì		JAT		оЧ ілЧ		8-A?	BCF		LCA-	[M-sl	Meta										
1 2 2 2 2 2 2 2 2 2	Ì			Q	80 3 \r8	308 Ac	Э Кр		səpi	oitee	<u>- [</u>	EGB GB	X	X	> <	\searrow	X	X	X	X	X	X
PART			IIS 023	28-A93	l yd (H,	A9) and	sarbo	Aydrod	atic F	monA	ojlok	Polyc										
1 1 2 2 3 3 4 4 5 5 5 5 5 5 5 5		Semivolatile Organic Compounds by EPA 8270																				
1 1 2 2 2 2 2 2 2 2	İ	EDB / EDC ÞÀ Eb¥ 8560 (soil)																				
Halogenated Volatiles by EPA 8260 Halogenated Volatiles by EPA		EDB / EDC ph Eby 8560 SIM (water)																				
FAX: FAX: FAX: E-MAIL: - 10 / 3/ 5 3 OHLE LAB# - 10 / 3/ 5 3 63 /	اد																					
FAX: FAX: FAX: E-MAIL: - 10 / 3/ 5 3 OHLE LAB# - 10 / 3/ 5 3 63 /	<u> </u>	Halogenated Volatiles by EPA 8260																				
FAX: FAX: FAX: E-MAIL: - 10 / 3/ 5 3 OHLE LAB# - 10 / 3/ 5 3 63 /		MTBE by EPA-8021 — EPA-8260 —																				
FAX: FAX: E-MAIL: C - 10 / 3/ 5 3 OHE LAB# - 10 / 3/ 5 3 OHE LAB# - 10 / 3/ 5 3 63 - 1 - 1 - 1 - 2 - 3 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 5 - 4 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 7 - 7 - 8 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 7 - 7 - 6 - 7 - 6 - 6 - 6 - 7 - 7 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 7 - 7 - 6	넴	BTEX by EPA-8021																				
FAX: FAX: FAX: E-MAIL: - 10 / 3/ 5 3 OHLE LAB# - 10 / 3/ 5 3 63 /		25 хэ-натми																				
FAX: FAX: FAX: E-MAIL: - 10 / 3/ 5 3 OHLE LAB# - 10 / 3/ 5 3 63 /																						
FAX: E-MAIL: - 10 //3/ 5 5 7 - 10 //3/ 5 5 7 - 10 //3/ 5 6 5 //3/ 5 6 5	₹	1 1				<u> </u>		· · · · · ·		ICID	-Hd	TWN										
See Pare Fax: E-MAIL: - 10												LAB#	/9	62	63	64	65	99	67	89	69	\mathcal{Q}
SAMPLE I.D. DATE TIME - 10													1									
SAMPLE I.D. DATE TIME - 10												ΙΥΡΕ	X.									->
SAMPLE I.D. DATE - 10												dash	~ C		~′	~	7	0				10
SAMPLE I.D. DATE - 10	-		_									ME	1.	513	12	34%	117	<i>'</i> 52	114	114	11.	11/
SAMPLE I.D. - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10												F	15	15	9	15	16	91	18	18	2	91
SAMPLE I.D. - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10			D			;;	٠,						2//5							1.	3	
SAMPLE I.D 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1			7 0/5	K		立	-MAIL			:		M	1/10							K-	7	4
			0	2			ш					$\mid \cdot \mid$									=	
				. `																		
				$ \mathcal{A} $								<u>-</u>	0	0	_	_		M		_	Q	Z
				0)							PLE	7	1 -	-	1	١	1	1	1	1	
PROJECT ID SEPORT TO SOMPANY: PROJECT ANNAGER: NUDRESS: NUMBERS: N				\bigvee								SAM	1		\ \	7	7	10	رٰ ا	5	()	2
PROJE STATE NOW	CTID	AT TO	SER:	:SS:		úi		λε ΤΟ ٩ΝΥ:	NOIT:	:SS:		$ \H $	50	8	20	ک ک	2	3	7 /	N	2	\geq
	PROJE	REPOF SOMP,	PROJE	NDDRE		HON	P.O. #:	NVOIC SOMP,	TTEN	ADDRE			<u>.</u>	2.	რ	4.	5.	6.	7. /	8.	6	10.

SPECIAL INSTRUCTIONS

	_
	W.
Time):	1
Date,	1
ле, (Jornpany, Date, Т	
Name, (
SIGNATURES (Name, (Dolinging Dyn
\overline{S}	

11/16/1<		1.10	
1 Polimerican Burner	I. Deliniquished by:	Received By: Young Makaua AU	2. Relinquished By:

•	3y:
•	Received E

QUESTED in Business Days*	OTHER:
TURNAROUND REQUESTED in Bi	stals & Inorganic Analysis
	Organic, MR

Specify:		
SAME	sis	
-	Analysi	SAME
2	arbon	-
က	/droca	က
(P)	s&H)	2
10	Fuel	

*Turnaround request less than standard may incur Rush Charges

Everett, WA 98208 Phone (425) 356-2600 Fax (425) 356-2626 http://www.alsglobal.com 8620 Holly Drive, Suite 100 ALS Environmental

Laboratory Analysis Request Chain Of Custody/

(Laboratory Use Only)	90/01
ALS Job#	151/17

//5 Page_

ð

	2	NOITIO	CINC	י ככ	JOO	O IV	I UJ	VIED	BE									į	
		,	SHE	NIA	/INC	E C	O H:	NBE	ΩИ	2	a	K	2	7	2	Z	2	7	\mathcal{Z}
								-											
cify)																			
èpe									-										
OTHER (Specify)									-								,	-	
뷥																	-		-
	est Herbs	lo\	/-ime	PS [
					(\(\)	 jbeci	per (5	tO als	təM										
	□ JAT □ k	Pri Po		8-AA	BCI	<u> </u>	-ADT	M-sls	t∋M										
	(ZE	308/1808	8 A9:	∃ √d		səpi	oiteac		109	>	\searrow	X	X	\times	X	>	X	X	X
	☐ MIS 0728-A93	yd (HA9) suo	csup	Hydro	oits	позА	oiloyo	(loq										
	0728	PA EPA	spu	nodu	100 c	ojue6	ıO əli	tslovin	nəS										
				(lios)	8560	EPA :	Сру	3 \ ED	EDE										
		∋ı,)	(wate	WIS	8590	. Aq∃	C p	3 \ ED	EDE										
		0928 ∀c																	
								ogena'											
ANALYSIS REQUESTED									_										
ξĮ			1097	:8-Ac				SE by											
R						1208	3-∆9∃	X by I	318		-								
SIS							Xξ)-H9T	WN										
Ā							XC]-H4T	MN										
A							нсів	1-H9T	ΜN										
									#		,			1					
									LAB#	71	G	73	hί	75	76	77	28	79	B
													, `				,		
									TYPE	Other									
									≱	3									7
•								 			_	8	200	ē,	_		0	0	5
									TIME	5 / 9	15:31	13:48	13:48	3:5	14:41	1 h:b1	20130	30,30	3
										15	77	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	-	18	19	;]	26	Z,	15
			FAX:						ا س	11/13/15/15 :31			. 1	95:81 51/21/11					13/15/10:55
	1 3		Ŧ	E-MAIL:					DATE	1/13	_		A	12,				H	5
		>		ф					\dashv					=					=
	$ \cdot $								ا ب								1		
	, d)							SAMPLE I.D.	Ø	8	7	7	5	9	9	1	7	8
									APL.	1	1	١	1	١		1 -	1	1	
ö						<u>.</u> .			SAN	i	- 5/	1	· V	, ' , '	1		۱, ا	\ \	7
ECT II	RT TC SECT GER:		انن		ANY:	NOL	ESS:			×	\geq	NC	>	$ \tilde{\lambda} $	\geq	خ	>	Š	NC
PROJECT ID:	REPORT TO COMPANY: PROJECT MANAGER: ADDRESS:		PHONE	P.O. #:	INVOICE TO COMPANY:	ATTENTION:	ADDRESS:			<u>.</u>	2.	رى د.	4.	5.	6.	7. /	8	9.	10.
n.	, Ψ∪ Ψ ∠ ∢	- 1	ч.	ш.	ı≕∪	Q.	١٩		1	•		1	ı `	ر "			. ~		

SPECIAL INSTRUCTIONS

	7
ne, Company Date, Time):	-18/1/2 Polaces 11
ne, O	8
IGNATURES (Nam	Relinanished Bv:

2 10 Standard Fu

	Analys
	<u>ا</u>
	Hydrocarbon Analy 3 1 Sawe
)	uels & Hy

Organic, Metals & Inorganic Analysis

TURNAROUND REQUESTED in Business Days*

L I	

*Turnaround request less than standard may incur Rush Charges

2. Relinquished By: Received By:

Received By:

ALS Environmental 8620 Holly Drive, Suite 100 Everett, WA 98208 Phone (425) 356-2600 Fax (425) 356-2626 http://www.alsglobal.com

Cha Laborato

	7.7
	CD.
	- 21
	(I)
	$\overline{}$
	_
	_
_	$\mathbf{\circ}$
•	A
_	w
	_
77	EE.
$\mathbf{\circ}$	_
\sim	
U	ťΛ
ت	V /
S	
CO .	ťΛ
	U ,
¬	_
ustody	nalysis Request
	_
_	~
_	"
_	
=	_
\Box	_
_	7
	-
_	. •
_	-
	>
=	>
E E	J.
all	ory ,
Jain	ory
hain	atory ,

(Laboratory Use Only)

EVIS110106

		BECEINED IN GOOD CONDILIONS										
0		NUMBER OF CONTAINERS	لك	Z	4	2	7	7	3	7	7	_
					. 0							
ď												
	(
0	ecif											
je Je	OTHER (Specify)											
Pac	出											
Date 11/16/15 Page	OT											
9//		☐ Semi-Vol ☐ Pest ☐ Herbs										
te 1		Metals Other (Specify)										
Dat		Metals-MTCA-5 ☐ RCRA-8 ☐ Pri Pol ☐ TAL ☐										
		Pesticides Dy EPA 8081/8082	\times	×	×			<u> </u>	\geq	>	X	X
		Semivolatile Organic Compounds by EPA 8270 Polycyclic Aromatic Hydrocarbons (PAH) by EPA-8270 SIM										
		EDB / EDC by EPA 8260 (soil)										
		EDB / EDC by EPA 8260 SIM (water)										
		Volatile Organic Compounds by EPA 8260										
	TED	Halogenated Volatiles by EPA 8260										
	JES.	MTBE by EPA-8021 □ EPA-8260 □										
	ZEQ!	PTEX by EPA-8021										
	SISF	имтрн-сх	-									
	ANALYSIS REQUESTED	XQ-H4TWN										
	AN	имдьн-нсір										
		LAB#	18	82	83	84	85	98	87	88	86	8
		TYPE	Other	/								4
					2	0	2	2		10	~	0
ш		TIME	11/3/15/0:55	08:11	08:11	12,10	12:10	81:01 51/5	11:11	11/13/15/12:56	1/12/15/11:29	08:81 S/re//
oal.co			115				. 1	911	15	15/	115	15
Isglot		FAX: E-MAIL: DATE	113				A	/13	=	113,	/13,	1/3
ww.a			11					11	=	=	"	1
http://www.alsglobal.com		SAMPLE I.D.	8-	6 -	6-	- 10	01 -	1-2	6-2	5-7	0 -	-1-2,
ALS)	ROJECT ID:	SSS: SSS: SSS: SSS: SSS: SSS: SSS: SSS	NS	NC	NS	NC	NS	NWC	NWC	NWC	55	NS
	Į ĝ	MANACOMPONE MANACO	<u> </u>	Qi	س	4.	i.	ω.		က်	6	Ç

S
z
ᅐ
\simeq
-
\circ
Ó
ñ.
뇬
'n
낒
≤
- 1
=
⋍
Ō
ш
α_
m

Relinquished By:	Males	11/16/15	1:10
Received By Shawing Rock Au	AU	11/16/15	1:10 pm

2. Relinquished By:

Received By:

'URNAROUND REQUESTED in Business Days*	OTHER:	Specify:		
IAROUND	Organic, Metals & Inorganic Analysis	SAME	alysis	. Me
置	nic ,		Ans	80
F	norga	2	Fuels & Hydrocarbon Analysis	-
	als & I	က	ydroc	က
	Met	F)	/« T	5 Standard
	nic,	~	ا ا	.,
	Orga	10	Standard	

*Turnaround request less than standard may incur Rush Charges

ALS Environmental 8620 Holly Drive, Suite 100 Everett, WA 98208 Phone (425) 356-2600 Fax (425) 356-2626 http://www.alsglobal.com

Laboratory Analysis Request Chain Of Custody/

ALS Job# (Laboratory Use (

ŏ 15 Page

Date

		ć	NOI.	NDIT	00	OOD	1 C	ED II	CEIA	ВE										
			_	SH	INE	ATN() - -	10 A	98W	NΝ	2									
Ī	·																			
																				•
Š																				
Sp									-											
E																				
OTHER (Specify)																	-			· · · · · · · · · · · · · · · · · · ·
러	☐ sdreH	tsə,	<u>.</u>	loV-im	es	□¥0	λ [tals	θM-q.	TCL										
H								S) iher												
ŀ	□		od jiq		0-1-1			3-ADT												
ŀ											,	<u></u>								
ŀ				808 Ac							X	\triangle								
-	☐ WIS 028																			
-		072	R A93	ids by																
								C py E												
				vater)	ı) Mi	3 092	3 Aq∃	C py E	3 \ ED	EDE										
ام			8560	A93 y	iq sp	unodı	Con	rganic	O əlite	SIOV										
				928	3 A93	s pλ	əlitsk	oV bet	euəßc	Halo										
				09	28-A	43 <u> </u>	1208	8-A93	βE pλ	ΙΤΜ										
뷔							120	8-A93	χd XΞ	3T8										
ANALYSIS REQUESTED								XΞ)-HdT	ΜN										
ٳڔ		•						XC]-HdT	MN										
Ž								нсір	I-HdT	MN										
										±±-										
										LAB#	16	92								
										\Box		_								
										出	, ,	4								
										TYPE	other	Wode								
									ŀ											
										TIME	 W	5.3								
	'										8	1/6								
		X.	-	FAX:	٠,					μІ	1/12/15 20:30	10, Method Slank 14/13/15/16:33								
		D/	\mathcal{V}		E-MAIL:					DATE	13	1								
		2/			Ш				}	\dashv	=	7								
		-										lan,								
		0)							ان		1 N								
		0								SAMPLE I.D.		Ž								
	,		7							MPI	1	15								
≅	0	~		\		ن 2	ż	ار ا		SA	VC -	0.7								
PROJECT ID:	REPORT TO COMPANY: PROJECT MANAGER:	ADDRESS:		Ë	#	INVOICE TO COMPANY:	ATTENTION:	ADDRESS:			<	11								
PR	MAN MAN	ADD		PHONE	P.O. #:	SON	ATTE	ADD			- -	2. I	რ	4.	5.	6.	7.	8.	0	10.

SPECIAL INSTRUCTIONS

Organic, Metals & Inorganic Analysis SIGNATURES (Name, Co 1. Relinquished By: Received By:

2. Relinquished By:

Received By:

Summand
Fuels & Hydrocarbon Analysis

TURNAROUND REQUESTED in Business Days*

Specify:

*Turnaround request less than standard may incur Rush Charges

December 28, 2015

Mr. Chad Kean Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043

Dear Mr. Kean,

On December 21st, 1 sample was received by our laboratory and assigned our laboratory project number EV15120171. The project was identified as your BA158014. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Rick Bagan

Laboratory Director

CLIENT CONTACT:

CERTIFICATE OF ANALYSIS

CLIENT: Terracon DATE: 12/28/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15120171 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15120171-01

Chad Kean DATE RECEIVED: 12/21/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 12/18/2015 2:00:00 PM

CLIENT SAMPLE ID Concrete, Soil Drum WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS By
PCB-1016	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1260	EPA-8082	1.6	0.10	1	MG/KG	12/23/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP

			ANALYSIS AN	IALYSIS
SURROGATE	METHOD	%REC	DATE	BY
TCMX	EPA-8082	105	12/23/2015	GAP
DCB	EPA-8082	119	12/23/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 12/28/2015

21905 - 64th Ave W, Suite 100 ALS SDG#: EV15120171 Mountlake Terrace, WA 98043

WDOE ACCREDITATION:

C601

CLIENT CONTACT: Chad Kean **CLIENT PROJECT:** BA158014

LABORATORY BLANK RESULTS

MBLK-12232015 - Batch R266900 - Soil by EPA-8082

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
PCB-1016	EPA-8082	U	MG/KG	0.10	12/23/2015	GAP
PCB-1221	EPA-8082	U	MG/KG	0.10	12/23/2015	GAP
PCB-1232	EPA-8082	U	MG/KG	0.10	12/23/2015	GAP
PCB-1242	EPA-8082	U	MG/KG	0.10	12/23/2015	GAP
PCB-1248	EPA-8082	U	MG/KG	0.10	12/23/2015	GAP
PCB-1254	EPA-8082	U	MG/KG	0.10	12/23/2015	GAP
PCB-1260	EPA-8082	U	MG/KG	0.10	12/23/2015	GAP
PCB-1268	EPA-8082	U	MG/KG	0.10	12/23/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 12/28/2015

21905 - 64th Ave W, Suite 100 ALS SDG#: EV15120171

Mountlake Terrace, WA 98043 WDOE ACCREDITATION: C601

CLIENT CONTACT: Chad Kean **CLIENT PROJECT:** BA158014

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: R266900 - Soil by EPA-8082

SPIKED COMPOUND	METHOD	%REC	RPD QUAL	ANALYSIS ANALYSIS BY DATE
PCB-1016 - BS	EPA-8082	72.0		12/23/2015 GAP
PCB-1016 - BSD	EPA-8082	79.0	9	12/23/2015 GAP
PCB-1260 - BS	EPA-8082	93.0		12/23/2015 GAP
PCB-1260 - BSD	EPA-8082	100	7	12/23/2015 GAP

APPROVED BY

Laboratory Director

ALS Environmental
8620 Holly Drive, Suite 100
Everett, WA 98208
Phone (425) 356-2600
Fax (425) 356-2626
http://www.alsglobal.com

Laboratory Analysis Request

Chain Of Custody/

(Laboratory Use Only)

ALS Job#

EUIShol7

(ALS) http://www	http://www.alsglobal.com	mo						L L					ate 1	3	Date 12/21/5/29e	ge	Ď			_
PROJECT ID: 15 8014	~				ANA	ANALYSIS REQUESTED		S E				ł	\mid	1	뷝	OTHER (Specify		ŀ	-	
REPORT TO COMPANY: COMPANY: COMPANY: COMPANY: Chack Kea MANAGER: Chack Kea ADDRESS: 3/9056 MOUTHUR HONE: 425-771-3304 PHONE: 425-771-3304 PO. #: INVOICE TO COMPANY: ATTENTION: ADDRESS: SAMPLE I.D.	E-MAIL: C	We W S We was	TYPE TYPE	to 200 to 900 45	NWTPH-HCID	WYPH-GX	MTBE by EPA-8021 ☐ EPA-8260 ☐	03S8 APA yd seliles Volatiles DA EPA 8260	Volatile Organic Compounds by EPA 8260	EDB / EDC by EPA 8260 (soil)	Semivolatile Organic Compounds by EPA 8270 SIM	PCB Pesticides Dy EPA 808 1808	Metals-MTCR-5 RCRA-8 Pri Pol TAL Metals Other (Specify)	☐ sdreH ☐ Pest ☐ Pest ☐ Herbs ☐ TCLP-Metals ☐ VOA ☐ Semi-Vol ☐ Pest				NUMBER OF CONTAINERS	RECEIVED IN GOOD CONDITION?	
Concrete, Soil Dam	Dam #2/19/15 14:00	00:71	Pilos																3	
2.		Ĭ																		
. 4.																				
5.																				
6.																				
8.																				
.6																				
10.																				
																				l

SPECIAL INSTRUCTIONS

SIGNATURES (Name, Rompany Date, Time):	ompany Date,	Time):	2	2/21/15
Received By: Call	af kunt,	ALS, 12	/>~/	15, 9:30a

		Sp.	9	
	ılysis	SAME	.s	
	inic Ana	-	Analys	SAME
-	norga	2	rbon	-
	ls & Ir	က	droca	က
	ganic, Metals & Inorganic Analysis	(P)	Fuels & Hydrocarbon Analysis	5
	30	0	置正	

5 Standard

TURNAROUND REQUESTED in Business Days*

*Turnaround request less than standard may incur Rush Charges

Received By:

2. Relinquished By:

December 28, 2015

Mr. Chad Kean Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043

Dear Mr. Kean,

On December 21st, 8 samples were received by our laboratory and assigned our laboratory project number EV15120172. The project was identified as your BA158014. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Rick Bagan

Laboratory Director

CLIENT CONTACT:

CERTIFICATE OF ANALYSIS

CLIENT: Terracon DATE: 12/28/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15120172
Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15120172-01

Chad Kean DATE RECEIVED: 12/21/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 12/17/2015 11:00:00 AM

CLIENT SAMPLE ID CS-16-2' WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP

			ANALYSIS AN	IALYSIS
SURROGATE	METHOD	%REC	DATE	BY
TCMX	EPA-8082	114	12/23/2015	GAP
DCB	EPA-8082	118	12/23/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 12/28/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15120172 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15120172-02

CLIENT CONTACT: Chad Kean DATE RECEIVED: 12/21/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 12/17/2015 11:10:00 AM

CLIENT SAMPLE ID CS-16-4' WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	DEOU!! TO	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN	IALYSIS BY
ANALYTE	METHOD	RESULTS	0.40		140///0	10/00/0015	040
PCB-1016	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP

SURROGATE	METHOD	%REC	DATE B	
TCMX	EPA-8082	106	12/23/2015	GAP
DCB	EPA-8082	122	12/23/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

ALS Group USA, Corp dba ALS Environmental

ΑΝΑΙ ΥΚΙΚ ΑΝΑΙ ΥΚΙΚ

CLIENT: Terracon DATE: 12/28/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15120172 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15120172-03

CLIENT CONTACT: Chad Kean DATE RECEIVED: 12/21/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 12/18/2015 1:14:00 PM

CLIENT SAMPLE ID NS-2-2' WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP

OUDDOOATE	METHOD	0/ DEO	ANALYSIS AN DATE	IALYSIS BY
SURROGATE	METHOD	%REC		
TCMX	EPA-8082	115	12/23/2015	GAP
DCB	EPA-8082	119	12/23/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 12/28/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15120172 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15120172-04

CLIENT CONTACT: Chad Kean DATE RECEIVED: 12/21/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 12/18/2015 1:41:00 PM

CLIENT SAMPLE ID NS-2-3' WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS AN DATE	IALYSIS By
TCMX	EPA-8082	121	12/23/2015	GAP
DCB	EPA-8082	123	12/23/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 12/28/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15120172 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15120172-05

CLIENT CONTACT: Chad Kean DATE RECEIVED: 12/21/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 12/17/2015 3:33:00 PM

CLIENT SAMPLE ID NS-3-2' WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS AN DATE	IALYSIS BY
TCMX	EPA-8082	129	12/23/2015	GAP
DCB	EPA-8082	128	12/23/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 12/28/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15120172 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15120172-06

CLIENT CONTACT: Chad Kean DATE RECEIVED: 12/21/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 12/17/2015 4:15:00 PM

CLIENT SAMPLE ID NS-3-3.5' WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS AN DATE	IALYSIS BY
TCMX	EPA-8082	127	12/23/2015	GAP
DCB	EPA-8082	133	12/23/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 12/28/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15120172 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15120172-07

CLIENT CONTACT: Chad Kean DATE RECEIVED: 12/21/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 12/18/2015 12:00:00 PM

CLIENT SAMPLE ID NS-9-2' WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP

SURROGATE	METHOD	%REC	DATE BY	
TCMX	EPA-8082	89.0	12/23/2015 G	AP.
DCB	EPA-8082	96.0	12/23/2015 G	ΆΡ

U - Analyte analyzed for but not detected at level above reporting limit.

ALS Group USA, Corp dba ALS Environmental

ΑΝΑΙ ΥΚΙΚ ΑΝΑΙ ΥΚΙΚ

CLIENT: Terracon DATE: 12/28/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15120172 Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15120172-08

CLIENT CONTACT: Chad Kean DATE RECEIVED: 12/21/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 12/18/2015 1:05:00 PM

CLIENT SAMPLE ID NS-9-3.5' WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN DATE	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	MG/KG	12/23/2015	GAP

SURROGATE	METHOD	%REC	ANALYSIS AN DATE	IALYSIS By
TCMX	EPA-8082	112	12/23/2015	GAP
DCB	EPA-8082	118	12/23/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 12/28/2015

21905 - 64th Ave W, Suite 100 ALS SDG#: EV15120172

Mountlake Terrace, WA 98043 WDOE ACCREDITATION: C601

CLIENT CONTACT: Chad Kean CLIENT PROJECT: BA158014

LABORATORY BLANK RESULTS

MBLK-12232015 - Batch R266900 - Soil by EPA-8082

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
PCB-1016	EPA-8082	U	MG/KG	0.10	12/23/2015	GAP
PCB-1221	EPA-8082	U	MG/KG	0.10	12/23/2015	GAP
PCB-1232	EPA-8082	U	MG/KG	0.10	12/23/2015	GAP
PCB-1242	EPA-8082	U	MG/KG	0.10	12/23/2015	GAP
PCB-1248	EPA-8082	U	MG/KG	0.10	12/23/2015	GAP
PCB-1254	EPA-8082	U	MG/KG	0.10	12/23/2015	GAP
PCB-1260	EPA-8082	U	MG/KG	0.10	12/23/2015	GAP
PCB-1268	EPA-8082	U	MG/KG	0.10	12/23/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 12/28/2015

21905 - 64th Ave W, Suite 100 ALS SDG#: EV15120172

Mountlake Terrace, WA 98043 WDOE ACCREDITATION: C601

CLIENT CONTACT: Chad Kean **CLIENT PROJECT:** BA158014

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: R266900 - Soil by EPA-8082

SPIKED COMPOUND	METHOD	%REC	RPD QUAL	ANALYSIS ANALYSIS BY DATE
PCB-1016 - BS	EPA-8082	72.0		12/23/2015 GAP
PCB-1016 - BSD	EPA-8082	79.0	9	12/23/2015 GAP
PCB-1260 - BS	EPA-8082	93.0		12/23/2015 GAP
PCB-1260 - BSD	EPA-8082	100	7	12/23/2015 GAP

APPROVED BY

Laboratory Director

Everett, WA 98208 Phone (425) 356-2600 Fax (425) 356-2626 http://www.alsglobal.com ALS Environmental 8620 Holly Drive, Suite 100

Chain Of Custody/

Laboratory Analysis Request

(Laboratory Use Only)

ALS Job#

-		NUMBER OF CONTRINERS	8	5	C	~	3	2	2	Z	
	(
	R (Specify)										
	OTHER										
ŀ	Ť	□ sdreH □ fze9 □ loV-ime2 □ AOV □ slisteM-9137									-
		Metals Other (Specify)									
		Metals-MTCA-5		7				\	\1		
		Polycyclic Aromatic Hydrocarbona (PAH) by EPA-8270 SIM PCB Dyycyclic Aromatic Hydrocarbona (PAH) by EPA-8270 SIM	×	Z,	X	<u> </u>			~	~	
		Semivolatile Organic Compounds by EPA 8270						-			
		EDB / EDC py EPA 8260 (soil)									
		EDB \ EDC p\ Eby 8560 SIM (water)									
	Ω	Volatile Organic Compounds by EPA 8260									
	STE	Halogenated Volatiles by EPA 8260									
	REQUESTED	MTBE by EPA-8021 ☐ EPA-8260 ☐									
		NWTPH-GX									
	ANALYSIS	XQ-H4TWN									
L	A	имтрн-нсір									
		LAB#	-	2	~	٦	S	2	t	∞	
		200 8043	7,18							A	
		Are W Sto 200 Tace, WA 98043 FAX: E-MAIL: cd Kean @terrarion TAA Q TYPE LAB!	11:00	11:10	13:14	13:41	15:33	16:15	13:00	13:05	
	7	FAVE L Tace L FAX: E-MAIL: GO DATE	12/17/15 11:00	01:11 5/12/12	P1:5/2/18/16	14:51 S1/81/E1	12/17/15 15:33	21:41514151	12/18/12:00	12/18/15/13:05	
	ROJECTID: 54158014	EPORT TO TECTAGO COMPANY: ROJECT ANAGGER: Chad Kean DDRESS: 21905 64th Ave W Sto 200 MOUNT Hake Tectace, 11/4 98043 HONE: 425-771-3204 Fax: E-MAIL: CAKEAN @ HETA THENTION: DDRESS: SAMPLE I.D. DATE TIME TYPE	CS-16-2'	CS-16-4'	NS-2-2'	5-2-3	5-3-2	NS-3-3.5'	NS-9-2'	NS-9-3.5'	

SPECIAL INSTRUCTIONS

SIGNATURES (Name, C	(Name, Company, Date, Ti	lime):	Y / 1 01 01
 Relinquished By: 	my!	18/19/20	12/21/10
201	100	/ . /	,

9:30 Wallshild, 415, 12/15, 9:30

Z		
Received By: Wall of with	Relinquished By:	Received By:
Receiv	Reling	Receiv
	73	

TURNAROUND REQUESTED in Business Days* Organic, Metals & Inorganic Analysis

Per nation Specify:

Fuels & Hydrocarbon Analysis

5 3 1 swe

5 Standard

2

က

(D)

10 Standard

*Turnaround request less than standard may incur Rush Charges

December 23, 2015

Mr. Chad Kean Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043

Dear Mr. Kean,

On December 21st, 1 sample was received by our laboratory and assigned our laboratory project number EV15120173. The project was identified as your BA158014. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Rick Bagan

Laboratory Director

CLIENT CONTACT:

CERTIFICATE OF ANALYSIS

CLIENT: Terracon DATE: 12/23/2015

21905 - 64th Ave W, Suite 100 ALS JOB#: EV15120173

Mountlake Terrace, WA 98043 ALS SAMPLE#: EV15120173-01

Chad Kean DATE RECEIVED: 12/21/2015

CLIENT PROJECT: BA158014 COLLECTION DATE: 12/18/2015 4:48:00 PM

CLIENT SAMPLE ID Water Drum WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS AN	IALYSIS BY
PCB-1016	EPA-8082	U	0.10	1	UG/L	12/23/2015	GAP
PCB-1221	EPA-8082	U	0.10	1	UG/L	12/23/2015	GAP
PCB-1232	EPA-8082	U	0.10	1	UG/L	12/23/2015	GAP
PCB-1242	EPA-8082	U	0.10	1	UG/L	12/23/2015	GAP
PCB-1248	EPA-8082	U	0.10	1	UG/L	12/23/2015	GAP
PCB-1254	EPA-8082	U	0.10	1	UG/L	12/23/2015	GAP
PCB-1260	EPA-8082	U	0.10	1	UG/L	12/23/2015	GAP
PCB-1268	EPA-8082	U	0.10	1	UG/L	12/23/2015	GAP

			ANALYSIS AN	IALYSIS
SURROGATE	METHOD	%REC	DATE	BY
TCMX	EPA-8082	106	12/23/2015	GAP
DCB	EPA-8082	110	12/23/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 12/23/2015

21905 - 64th Ave W, Suite 100 ALS SDG#: EV15120173

Mountlake Terrace, WA 98043 WDOE ACCREDITATION: C601

CLIENT CONTACT: Chad Kean CLIENT PROJECT: BA158014

LABORATORY BLANK RESULTS

MBLK-12232015 - Batch R266833 - Water by EPA-8082

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
PCB-1016	EPA-8082	U	UG/L	0.10	12/23/2015	GAP
PCB-1221	EPA-8082	U	UG/L	0.10	12/23/2015	GAP
PCB-1232	EPA-8082	U	UG/L	0.10	12/23/2015	GAP
PCB-1242	EPA-8082	U	UG/L	0.10	12/23/2015	GAP
PCB-1248	EPA-8082	U	UG/L	0.10	12/23/2015	GAP
PCB-1254	EPA-8082	U	UG/L	0.10	12/23/2015	GAP
PCB-1260	EPA-8082	U	UG/L	0.10	12/23/2015	GAP
PCB-1268	EPA-8082	U	UG/L	0.10	12/23/2015	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Terracon DATE: 12/23/2015

21905 - 64th Ave W, Suite 100 ALS SDG#: EV15120173

Mountlake Terrace, WA 98043 WDOE ACCREDITATION: C601

CLIENT CONTACT: Chad Kean CLIENT PROJECT: BA158014

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: R266833 - Water by EPA-8082

SPIKED COMPOUND	METHOD	%REC	RPD QUAL	ANALYSIS ANALYSIS BY DATE	
PCB-1016 - BS	EPA-8082	55.0		12/23/2015 GAP	
PCB-1016 - BSD	EPA-8082	62.0	12	12/23/2015 GAP	
PCB-1260 - BS	EPA-8082	79.0		12/23/2015 GAP	
PCB-1260 - BSD	EPA-8082	81.0	3	12/23/2015 GAP	

APPROVED BY

Laboratory Director

ALS Environmental8620 Holly Drive, Suite 100
Everett, WA 98208
Phone (425) 356-2600
Fax (425) 356-2626
http://www.alsglobal.c

Laboratory Analysis Request Chain Of Custody/

(Laboratory Use Only)	20173
ALS Job#	EVISI

200			
alsglobal.com	Date D	1/1/5Page) Of
1	ANAI VSIS REOI IESTED	OTHER (Specify)	

PROJECTID: 154158014			ANALYSIS REQUESTED	SIS RE	OUES								6	OTHER (Specify)	Speci	2			
ADDRESS: 21905 64th Ave W Ste. MAUNTHAKE TEGACE, WA 9 PHONE: 425-771-3304 FAX: PO. #: E-MAIL: CAKEANE INVOICE TO COMPANY: ATTENTION: ADDRESS: SAMPLE LD. DATE TIME	98043 94043 045043	8 2 3 3 4 B##	1/МТРН-НСІD ТИТРН-ПОТ	MUTPH-GX	37EK by EPA-8021 □ EPA-8260 □	dalogenated Volatiles by EPA 8260	FDB / EDC by EPA 8260 SIM (water)	DB / EDC by EPA 8260 (soil)	Senivolatile Organic Compounds by EPA-8270 SIM Solycyclic Aromatic Hydrocarbons (PAH) by EPA-8270 SIM	Pesticides Dy EPA 808 (1808)	Netals-MTCA-5 PRA-88 Pri Pol TAL	Netals Other (Specify) CLP-Metals						NUMBER OF CONTAINERS	SECEINED IN GOOD CONDILIONS
VM 12/18/15	16:48 Worle			-		↓	1	┺		4)	—				ļ		-		
-																			
ė.																			
4.																			
5.																			
6.																			
7.																			
8.																			
6.																			
10.																			

တ
Z
0
F
$\dot{\mathbf{C}}$
Ĩ
α
H
∞
\leq
₹
ㅎ
Ш
풉
50
٠,

17111	13/21/15	
Date, Time):	praean	
Gompany, Date, T	1.14 A	100
GNATURES (Name, 9	Relinquished By:	

Received By: Wall flind, ALS, 12/21/15, 9:3000

1	
Relinquished By:	Received By:
2	

TURNAROUND REQUESTED in Business Days Organic, Metals & Inorganic Analysis

-	4ydrocarbon Analysi	SAME
2	rbon	-
က	/droca	က
	Fuels & Hy	Standard
10	Fue	

Specify: SAME *Turnaround request less than standard may incur Rush Charges

APPENDIX D – Terracon - PCBs Concrete and Soil Sampling Work Plan and Sampling and Analytical Plan dated October 7, 2015

PCBs Concrete and Soil Sampling Work Plan and Sampling and Analytical Plan

North Campus Student Housing - McCarty Hall
University of Washington
Seattle, King County, Washington

October 7, 2015 UW Project No. 204350 Terracon Project No. BA158014

Prepared for:

University of Washington Seattle, Washington

Prepared by:

Terracon Consultants, Inc. Mountlake Terrace, Washington

Offices Nationwide Employee-Owned Established in 1965 terracon.com

University of Washington Capital Projects Office Box 352205 Seattle, WA 98195-2205

Attn: Mr. Shane Ruegamer

Re: PCBs Concrete and Soil Sampling Work Plan and Sampling and

Analytical Plan

North Campus Student Housing - McCarty Hall

University of Washington

Seattle, King County, Washington

UW Project No. 204350

Terracon Project No. BA158014

Terracon Consultants, Inc. is pleased to submit this Work Plan and Sampling and Analytical Plan for the Polychlorinated Biphenyls (PCBs) Concrete and Soil Sampling activities proposed within the basement level transformer room portions of the north, south, and central towers at McCarty Hall at the above referenced site.

We appreciate the opportunity to perform these services for the University of Washington. Please contact the undersigned if you have questions regarding the information provided in the work plan and sampling and analysis plan.

Sincerely,

Terracon Consultants, Inc.

Chad Kean, CIH, CHMM, CPSWQ

Project Manager II

Michael D. Noll, LG, LHG Senior Project Manager

TABLE OF CONTENTS

Page No.

1.0	INTRODUCTION1	
1.1	Site Vicinity Description1	
1.2	Summary of Previous Work	
1.3 1.4	Standard of Care	
2.0	INVESTIGATION OBJECTIVES4	
2.1	Project Objectives	
2.2	Data Quality Objectives4 Regulatory Standards/Guidelines4	
3.0	PHYSICAL SETTING	
3.1	Site Geology and Hydrogeology5	
4.0	CONCRETE AND SOIL SAMPLING STRATEGY AND RATIONALE5	
4.1	Concrete Sampling5	
4.2	Soil Sampling6	
5.0	FIELD METHODS AND SAMPLING PROCEDURES6	
5.1	Pre-mobilization Activities6	
5.2	Pre-Construction Meeting6	
5.3	Health and Safety7	
5.4	Sampling Activities	
5.5 5.6	Decontamination Procedures	
5.7	Sample Documentation9	
5.8	Investigation Derived Waste10	
6.0	ANALYTICAL STRATEGY10	
6.1	Analytical Methods11	
6.2	Sample Containers, Preservatives, and Holding Times11	
6.3	Field Quality Control Samples11	
7.0	ANALYTICAL QUALITY CONTROL PROCEDURES12	
7.1	Qualifications of Analytical Laboratory12	
7.2	Laboratory Quality Control Procedures12	
7.3	Laboratory Quality Control Samples12	

APPENDICES

Appendix A

Figure 1	Site Location Map
Figure 2	Proposed Sample Locations – McCarty Hall - South
Figure 3	Proposed Sample Locations – McCarty Hall - North
Figure 4	Proposed Sample Locations – McCarty Hall - Central
Figure 5	Proposed Sample Locations – McCarty Hall - Central Hall

Appendix B

Dames & Moore - Closure Report PCB Remediation - June 1997

North Campus Student Housing - McCarty Hall
Seattle, Washington October 7, 2015 Terracon Project No. BA158014

1.0 Introduction

On behalf of the University of Washington, Terracon Consultants, Inc. (Terracon) has prepared this Polychlorinated Biphenyls (PCBs) Concrete and Soil Sampling Work Plan and Sampling and Analytical Plan for assessing the extent of PCBs in the concrete floor and underlying pea gravel fill as a result historical releases of PCBs that were reported to the Washington Department of Ecology (Ecology) and United States Environmental Protection Agency (EPA) Region 10 in 1995. PCBs, and in particular Arochlor 1260, were detected on the concrete floor surface, in the concrete floor, and in the pea gravel fill beneath the concrete floor in 1995 in the basement level transformer room portions of the north, south, and central towers at McCarty Hall. In addition, portions of the concrete floor and underlying pea gravel in the north and central tower electrical rooms were removed for offsite disposal in 1996, during the replacement of the transformers.

1.1 Site Vicinity Description

The site is located in the North portion of the University of Washington campus. McCarty Hall is comprised of a north, south and central tower. The site is bounded to the north by Northeast 45th Street and to the east, south, and west by additional University of Washington facilities. The location of the site is illustrated in Figure 1.

1.2 Summary of Previous Work

Dames & Moore completed a Closure Report PCB Remediation at the site in June 1997. As part of the investigation, site characterization was conducted in the transformer rooms between November 1994 and March 1995 to determine the nature and extent of PCB contaminated material resulting from the transformer oil leaks or spills. The results of the site characterization indicated that PCBs were present in all three transformer rooms at McCarty Hall exceeding regulatory action levels under the Toxics Substance Control Act (TSCA). Please see the Dames & Moore report included as Appendix B for reference, for further information regarding the initial site characterization and remedial activities.

Dames & Moore conducted remedial activities in the north, south, and central tower transformer rooms in McCarty Hall between July and December 1996. Remedial activities included removal, disposal and/or replacement of the transformers and electrical appurtenances containing PCBs; washing and rinsing of PCB contaminated concrete surfaces; scabbling and encapsulating of the washed PCB contaminated concrete surfaces; removal of PCB contaminated concrete slabs and underlying soils; confirmatory sampling and analysis during and following removal or decontamination activities; and waste disposal.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington October 7, 2015 ■ Terracon Project No. BA158014

In the north tower transformer room, remedial activities included decontamination of concrete surfaces by washing and rinsing, scabbling, encapsulation, and removal of concrete slabs and underlying soils. During the initial investigation, five core samples were collected from the concrete floor. One core sample contained 390 milligrams per kilogram (mg/kg) of PCBs. The concrete floor slabs located in the northeast corner and south-central portion of the electrical room were removed and replaced. Following the concrete floor slab removal, one soil sample was collected at approximately seven inches below ground surface (bgs) and contained 1.6 mg/kg PCBs. A total of four wipe sample were collected prior to the slab removal and, based on the wipe sample results (PCBs concenations ranged from 7 to $470\mu g$ / $100cm^2$), portions of the floor slab were either removed or encapsulated. In addition, in the non-encapsulated areas, the floors were washed and rinsed and an additional four wipe samples were collected. Based on the results of the final wipe samples, (the results ranged from less than 1 μg / $100cm^2$ to 35 μg / $100cm^2$), no further remedial action was completed in those areas.

In the south tower transformer room, remedial activities included decontamination of concrete surfaces by washing and rinsing, scabbling, and encapsulation using an epoxybased paint. A total of 12 post-cleanup surface wipe samples were collected from the concrete floor surface, with results ranging from less than 1 microgram per 100 square centimeters (μg / $100 cm^2$) to 35 μg / $100 cm^2$. Based on the wipe sample results, the surfaces were then encapsulated with three coasts of epoxy paint. The three layers were color coded in gray, tan and red from the top to bottom.

In the central transformer room, remedial activities included decontamination of concrete surfaces by washing and rinsing, scabbling, encapsulation, and removal of concrete slabs and underlying soils. During the initial investigation, seven concrete cores and six sub-slab pea gravel samples were collected at depths ranging up to 2.4 feet bgs. Two concrete core samples and two pea gravel samples contained PCBs at concentrations above 10 mg/kg. The concrete floor in the east portion of the electrical room was removed and replaced, along with the underlying pea gravel to depths up to approximately 39 inches bgs. In west portion of the room, the floor was scabbled. Based on the results of three post-scabbling wipe samples (all less than 10 μg / $100 cm^2$), no further remedial action was completed on the electrical room floor. In addition, the east half of the north wall of the electrical room wall. Based on the results (both less than 10 μg / $100 cm^2$), no further remedial action was completed on the electrical room wall.

In the hallway areas outside of the central transformer room, remedial activities included decontamination of concrete surfaces by washing and rinsing, scabbling, encapsulation, and removal of a portion of the concrete slab. Based on the results of the initial investigation and follow-up sampling, it was decided that portions of the surrounding hallway would either be washed and rinsed, encapsulated, or removed. Based on the sampling results, the slab

North Campus Student Housing - McCarty Hall Seattle, Washington October 7, 2015 Terracon Project No. BA158014

in the doorway of the fan room was removed and replaced, and the remainder of the impacted hallway concrete floor area was encapsulated.

1.3 Standard of Care

Terracon's services will be performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. Please note that Terracon does not warrant the work of laboratories, regulatory agencies or other third parties supplying information used in the preparation of this work plan and sampling and analysis plan, or in any subsequent reports. Our services will be performed in accordance with the scope of work agreed to by our client, as reflected in our executed task order, and were not restricted by ASTM E1903-11.

Findings, conclusions and recommendations resulting from our services are based upon information derived from the on-site activities and other services performed under our scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, non-detectable or not present during these services, and we cannot represent that the site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this investigation. Subsurface conditions may vary from those encountered at specific borings or during other surveys, tests, assessments, investigations or exploratory services; the data, interpretations, findings, and our recommendations are based solely upon data obtained at the time and within the scope of these services.

No environmental site assessment can wholly eliminate uncertainty regarding the potential for contaminants in connection with a property. Completion of the activities proposed in this work plan and sampling and analysis plan is intended to reduce, but not eliminate, uncertainty regarding the existence of contaminants in connection with the subject property.

1.4 Reliance

This work plan and sampling and analysis plan is certified to, can be relied upon by, and has been prepared for the exclusive use of the University of Washington and regulatory agencies having jurisdiction over the site. Reliance on this work plan and sampling and analysis plan and subsequent reports by the client and all authorized parties will be subject to the terms, conditions and limitations stated in our proposals, reports, and Argus Pacific's Master Agreement for Regulated Building Materials and Engineer Services with the University of Washington.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington October 7, 2015 ■ Terracon Project No. BA158014

2.0 Investigation Objectives

The overall objectives of the PCBs concrete and soil sampling work plan and sampling and analysis plan at McCarty Hall are outlined in the following sections.

2.1 Project Objectives

The primary objective of this project is to assess PCBs in concrete and underlying pea gravel fill at McCarty Hall in each of the hall tower transformer rooms. Specifically, the proposed work will include conducting sampling of concrete floors and walls in each of the hall tower transformer rooms, along with sampling of the underlying pea gravel fill, to assess current PCB levels and document the extents of PCB contamination. Following completion of the sampling work, Terracon will produce a report documenting our findings.

2.2 Data Quality Objectives

The overall QA/QC objectives of this work plan and sampling and analysis plan are to outline procedures for the collection and assessment of data that are within acceptable ranges of precision, accuracy, representativeness, completeness, and comparability (PARCC) to meet the project Data Quality Objectives (DQOs). The DQOs associated with environmental data are a function of the sampling rationale and the procedures used to collect the samples, as well as the analytical methods and instrumentation used. However, uncertainty cannot be eliminated entirely from environmental data.

Details regarding the sampling rationale, procedures, and analytical methods are provided in Sections 4.0 through 5.0 of this work plan and sampling and analysis plan. Information with respect to field and laboratory quality assurance and quality control checks is provided in Sections 6.0 and 7.0.

The DQOs for this investigation will be used to provide environmental data of sufficient quantity and quality to support an evaluation of the extent of historical PCB releases to the concrete floor and underlying pea gravel fill associated with the electrical transformers and appurtances located in the basement areas of the north, south, and central towers.

2.3 Regulatory Standards/Guidelines

PCBs and PCB-contaminated materials are regulated by the EPA under the Toxic Substances Control Act (TSCA), 40 CFR Part 761 and also by Ecology under the Model Toxics Control Act (MTCA). Based on the previous work conducted at the site by Dames & Moore, which was conducted under TSCA and reviewed by EPA Region X, it was

North Campus Student Housing - McCarty Hall ■ Seattle, Washington October 7, 2015 ■ Terracon Project No. BA158014

determined that Terracon's additional work will also be conducted under TSCA and submitted to the EPA for review and comment.

3.0 Physical Setting

Brief descriptions of regional and local topographic and hydrogeologic settings associated with the site are presented in this section.

3.1 Site Geology and Hydrogeology

Soils types observed during Dames & Moore's sub slab investigation at the site (Dames & Moore / Closure Report PCB Remediation 1997) consisted of pea gravel (probable slab underlayment) to the maximum depth explored (39 inches). No indications of groundwater were observed during Dames & Moore's investigation. Please see the Dames & Moore report Included as Appendix B for reference for further information regarding the regional and local geology and hydrogeology.

4.0 Concrete and Soil Sampling Strategy and Rationale

Described in this section are the sampling strategies that will be employed to meet the project and data quality objectives stated above, as well as the rationale behind the selection of sample locations and analytical methods.

Concrete sampling of the floor slabs and walls will be completed using a rotary hammer and bit to produce pulverized samples of the concrete. Terracon proposes to collect 40 full-depth samples from the floor slabs and 10 full-depth samples from the walls throughout the hall transformer rooms and surrounding areas. Soil sampling will be conducted by utilizing a stainless steel hand auger to collect samples of the underlying pea gravel fill/soils.

4.1 Concrete Sampling

Concrete samples will be collected utilizing a rotary hammer and bit to produce pulverized samples of the concrete. One discrete full-depth sample from each location shown in Figures 1-4 will be collected for laboratory analysis. Concrete samples will be submitted to ALS Analytical Group (ALS) in Everett, Washington, for PCB analysis by EPA Method 8082, in accordance with the procedures outlined in Section 6.0 below.

The results of these analyses will be used to assess the extent and levels of PCB contamination in the concrete floors and walls of the three electrical rooms at the site.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington October 7, 2015 ■ Terracon Project No. BA158014

4.2 Soil Sampling

Following completion of each of the 40 concrete corings discussed in Section 4.1 above, a discrete soil sample will be collected for laboratory analysis from directly beneath the floor slab using a clean stainless steel hand auger. In addition, at one location in each of the transformer rooms additional soil samples will be collected at approximately two and four feet below the top of the floor to evaluate the deeper underlying pea gravel fill/soils for PCB impacts. Soil samples will be submitted to ALS for PCB analysis by EPA Method 8082, in accordance with the procedures outlined in Section 6.0 below.

The results of these analyses will be used to assess the extent and levels of PCB impacts in the pea gravel fill/soils beneath the electrical room concrete floors at the site.

5.0 Field Methods and Sampling Procedures

The following section provides detailed information regarding the methods and procedures that will be used to conduct the additional site characterization.

5.1 Pre-mobilization Activities

Prior to conducting intrusive activities, several critical tasks will be performed to ensure compliance with applicable regulatory requirements and to minimize the potential risk associated with rotary hammering and subsurface sampling.

EPA Review – This concrete and soil sampling work plan and sampling and analysis plan will be submitted to EPA Region 10 for review and approval.

Underground Utility Clearance - No later than four days prior to mobilization, Terracon project personnel will clearly mark or stake the proposed exploration locations and contact Underground Services Alert (USA) to obtain information regarding underground utility or service lines in the proposed work area. Terracon will obtain a USA ticket number for the project that will be included in the field notes associated with the investigation. Terracon will additionally contract for the services of a private utility locating service to survey the proposed exploration locations to identify utilities and/or underground structures that may be impacted as part of this project.

5.2 Pre-Construction Meeting

Terracon will schedule an on-site pre-construction meeting with the University of Washington to discuss the proposed intrusive activities within the structure. The topics covered in the pre-construction meeting are as follows:

North Campus Student Housing - McCarty Hall ■ Seattle, Washington October 7, 2015 ■ Terracon Project No. BA158014

- Discuss worker safety with regard to the proposed work.
- Identify and/or locate all utilities that will be within the limits of the proposed exploration areas.
- Discuss the proposed duration of the project from start to finish, and any anticipated building worker/resident disruptions.
- Discuss proposed shutdowns of any live electrical equipment to facilitate the sampling.
- Identify any issues with returning the damaged interior portions of the structure to original and/or near original condition, as applicable.

5.3 Health and Safety

A site-specific Health and Safety Plan (HASP) has been prepared for this investigation and will be implemented by all field personnel and project management. All field personnel are required to read and understand the HASP prior to the initiation of work. In addition, a daily tailgate safety meeting will be conducted by the Terracon site safety officer each day prior to the start of field activities.

5.4 Sampling Activities

Based on the surface and subsurface conditions and fill/soil types present at the site, it is anticipated that the all concrete drilling and sampling activities will be conducted using a rotary hammer and bit, and that all soil samples will be collected using a clean stainless steel hand auger.

Concrete Sampling – Concrete samples will be collected using a rotary hammer and bit to produce pulverized samples of the concrete. Bit size will vary by location but will be between 1-4 inches in diameter. The drill bit will be placed within a dust collection shroud attached to a High Efficiency Particulate Air (HEPA) filter equipped vacuum cleaner to control fugitive dust. In addition, a HEPA filter equipped air scrubber will also be placed adjacent to the sample location to help control fugitive dust. Concrete samples will be collected into 4-oz glass jars using clean stainless steel scoops.

Soil Sampling – Following completion of the sampling of the concrete floor slabs, pea gravel fill/soil samples will be collected from directly beneath the concrete floor using a clean stainless steel 2.5-inch diameter hand auger. In addition, at one location in each of the electrical transformer rooms, additional soil samples will be collected at approximately two and four feet below the top of the floor to evaluate the deeper underlying pea gravel fill/soils for PCB impacts. During hand auger soil sampling, a HEPA filter equipped air scrubber will also be placed adjacent to the sample location to help control fugitive dust, and a HEPA filter equipped vacuum cleaner will be available to deal with any spoils on the concrete floor

North Campus Student Housing - McCarty Hall ■ Seattle, Washington October 7, 2015 ■ Terracon Project No. BA158014

surface. A new 4-inch PVC pipe will be used as a conductor pipe to facilitate hand auguring to the required depths for each of the two and four foot sample locations. Soil samples will be collected into 4-oz glass jars using clean stainless steel scoops.

Pea gravel fill/soil spoils generated during hand auguring will be contained within the investigation derived waste (IDW) drums that will be temporarily stored onsite, pending characterization for off-site disposal. All sample locations will be patched using concrete quick patch and new clean pea gravel will be used to fill soil boring to the bottom of the slab.

5.5 Decontamination Procedures

Decontamination of non-disposable sampling equipment will be performed prior to sampling and in between sample locations to prevent the introduction of extraneous material into samples and to prevent cross-contamination between samples. All non-disposable sampling equipment utilized will be decontaminated by washing with a non-phosphate detergent, such as Liquinox™, Alconox, or equivalent, followed by a distilled water rinse. Decontamination water will be collected in drums onsite.

5.6 Sample Handling Procedures

The following subsections provide details regarding the sample handling procedures that will be followed for this investigation. These include sample labeling, packaging, and shipping procedures.

Labeling - Sample labels are necessary to prevent misidentification of samples. Sample labels will be filled out in indelible black or blue ink and affixed to sample containers at the time of sample collection. Each sample container will be labeled with the following, at a minimum:

- Sample identification number
- Sample collection date (month/day/year)
- Time of collection
- Sampler's initials
- Analyses required

Packaging and Shipping - Immediately after sample labeling, sample containers will be bagged in a resealable plastic bag to protect the samples from moisture and to prevent breakage and potential cross-contamination during transportation to the laboratory. All glass sample containers will be protected with bubble wrap if transported by a commercial carrier. The temperature of the samples will be recorded by the laboratory on the Chain of Custody (COC) record immediately upon receipt of the samples.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington October 7, 2015 ■ Terracon Project No. BA158014

Sample cooler drain spouts will be taped from the inside and outside of the cooler to prevent any leakage. Samples transported by a laboratory-assigned courier will be packed in a sample cooler with sufficient ice to keep the samples cooled.

5.7 Sample Documentation

The following subsections provide details regarding the sample documentation procedures that will be followed for this investigation. These include preparation of Chain of Custody Forms and documentation of field notes.

Chain of Custody (COC) - To establish the documentation necessary to trace sample possession from the time of collection through analysis and disposal, a COC record will be completely filled out and will accompany every sample. Samples will be delivered to the laboratory for analysis as soon as practical. A COC record will accompany all samples. At a minimum, the following items will be recorded on the COC record:

- Project name
- Project location/Site ID
- Project number
- Sample ID
- Sampler name
- Date (of sample collection)
- Time (of sample collection to the nearest minute, 24-hour clock)
- Sample type (matrix)
- Number of sample containers
- Analyses required
- Comments
- Observations specific to sample
- The sampler will be the first person to relinquish sample possession
- Courier/laboratory representative signature
- Date/time (of custody transfer)

Field Logbooks/Notebooks - In order to maintain the integrity and traceability of samples, all information pertinent to field sampling will be recorded in a field logbook or field notebook. All samples will be properly labeled and packaged prior to being transported to the laboratory and will be accompanied by completed COC documentation. All documentation will be recorded in the field logbook or notebook in indelible black or blue ink. At the end of each workday, the logbook/notebook pages will be signed by the responsible sampler and any unused portions of the logbook pages will be crossed out, signed, and dated. If it is necessary to transfer the logbook to another person, the person relinquishing the logbook will sign and date the last page used and the person receiving the logbook will sign and date the next page to be used.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington October 7, 2015 ■ Terracon Project No. BA158014

At a minimum, the logbook will contain the following information:

- Project name and site location
- Date and time
- Personnel in attendance
- General information
- Work performed
- Field observations
- Sampling performed, including specifics such as location, type of sample, type of analyses, and sample identification
- Descriptions of deviations from this work plan and sampling and analysis plan
- Problems encountered and corrective action taken
- Identification of field QC samples
- QC activities
- Verbal or written instructions
- Any other events that may affect the samples

5.8 Investigation Derived Waste

Two drums of investigation-derived waste (IDW) including one 30-gallon concrete/soil and one 16-gallon water drum will be stored at the site for this project. Decontamination water will be generated during the sampling activities performed during this investigation and will be placed in the 16-gallon water drum stored on site.

The drums will be clearly labeled with the following information:

- Contact information for Terracon Consultants
- Date (day that accumulation of drum contents was initiated)
- Media type (concrete/soil spoils, decontamination water)
- Disposition (non-hazardous, pending analysis)

The IDW drums will be disposed in conjunction with the PCB contaminated concrete and soil, which will be conducted under a separate specification/work plan.

6.0 Analytical Strategy

This section outlines the analytical methods, sample containers, preservative requirements, and field quality control (QC) samples for this investigation.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington October 7, 2015 ■ Terracon Project No. BA158014

6.1 Analytical Methods

The following analytical methods will be used to analyze soil and groundwater samples for this project:

PCB analysis by EPA Method 8082.

Detailed information on methods and calibration criteria is provided in Section 7.0.

6.2 Sample Containers, Preservatives, and Holding Times

Concrete, soil and decontamination water samples will be placed in clean glassware provided by the laboratory. Each soil sample will comprise of one 4-ounce clear glass jar. Each decontamination water sample will comprise one 1-liter amber bottle without preservative. Hold times for PCB analysis of concrete/soil and water are 7 days to extract and then 40 days to analyze.

6.3 Field Quality Control Samples

Field QC samples will be collected and analyzed during the project to assess the consistency and performance of the sampling program. Field QC samples for this project will consist of five concrete duplicates and a single equipment blank. Field QC samples will be analyzed for PCBs using EPA Method 8082.

The field duplicates will consist of two distinct concrete samples (an original and a duplicate) from the same sample location collected at the same time to the extent practical and using the same sampling techniques. The field duplicate data will be used to evaluate the precision of the overall sample collection and analysis processes. Due to the heterogeneous nature of the soil matrix, field duplicate samples of soil will not be collected.

Field duplicates are uniquely identified so that the identity of the field duplicates is "blind" to the analytical laboratory. Locations of field duplicate samples and their identifications will be recorded in the field notes.

The equipment blank will be prepared by pouring a sample of deionized water over or through decontaminated field sampling equipment prior to the collection of environmental samples. The equipment blank will be stored with the other samples and analyzed by the laboratory for PCBs by the same method used for the other samples.

Equipment blanks are used to assess the adequacy of the decontamination process. They assess contamination from the total sampling, sample preparation and measurement process, when decontaminated sampling equipment is used to collect samples. Equipment blanks must be prepared using the same type of containers as the field samples.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington October 7, 2015 ■ Terracon Project No. BA158014

7.0 Analytical Quality Control Procedures

This section describes laboratory qualification, sample custody and documentation, QC procedures, QC samples, preventative maintenance, data review, and deliverables for the collection of samples for chemical analysis.

7.1 Qualifications of Analytical Laboratory

The analytical laboratory selected to analyze samples for this project will be certified by the Washington State Department of Ecology and through the National Environmental Laboratory Accreditation Program (NELAP) for all of the analytical methods required for the project. The selected laboratory for the project will be capable of providing the required turnaround times, project QC, and data deliverables required by this work plan and sampling and analysis plan.

7.2 Laboratory Quality Control Procedures

The analytical laboratory must have written standard operating procedures (SOPs) defining the instrumentation, instrumentation maintenance, tuning, calibration, method detection and RLs, QC requirements, blank requirements, and step-by-step procedures for each analytical method. The SOPs must be available to the analysts performing the work. The SOPs must meet or exceed the requirements of the analytical methods cited in this work plan and sampling and analysis plan. The laboratory must maintain logs of all activities that have an impact on the quality of the laboratory results.

Any portion of the method that is subcontracted by the laboratory to another laboratory or sent to another facility of the same network of laboratories must have the prior approval of the Terracon Project Manager.

The laboratory must maintain the instruments in working condition required by the methods specified for the analyses. Sufficient redundancy in equipment must be available in the laboratory to handle downtime situations. Method substitution because of instrumental failure will not be permitted without written approval from the Terracon Project Manager.

7.3 Laboratory Quality Control Samples

The following subsections outline the laboratory QC samples required by this project.

Calibration - All instruments and equipment must be calibrated in accordance with the specified methods, unless different instructions are included in this document. Each instrument must be calibrated with the standard solutions appropriate to the type of instrument and the calibration range established for the method.

North Campus Student Housing - McCarty Hall ■ Seattle, Washington October 7, 2015 ■ Terracon Project No. BA158014

Initial calibrations (ICALs) should be performed when the method is first used and again whenever the continuing calibrations fail to meet their respective acceptance criteria. In addition, if the instrument undergoes significant maintenance, the ICAL must be repeated. Continuing calibrations verify that the instrument performance has remained within the limits set at the time of the ICAL. The frequency of continuing calibrations is specified in referenced methods.

Instrument/Calibration Blanks - Instrument blanks are run to ensure that analytes from previous runs have been purged out of the system and do not contaminate succeeding runs. Instrument blanks must be run following calibration runs, before sample analyses are performed, and after samples containing high concentrations of potentially interfering materials are found.

Target analytes must not appear in the instrument blanks at concentrations greater than half the required RLs. If the laboratory consistently observes contaminants in the instrument blanks, the laboratory must investigate the source of the contamination and eliminate it, if possible.

Method Blanks (MB) - Method blanks are prepared in the same manner as the samples, using the same reagents and glassware as for samples. The purpose of the method blank is to ensure that the equipment and reagents used in preparing the samples are free of contaminants that could interfere with the analysis. The method blank must be prepared and analyzed for each batch of 20 project samples or less per matrix (aqueous and solid) type.

The method blank must not exhibit analytes at concentrations greater than half the required RLs. If contaminants are found that either contribute to the apparent concentration of a particular target analyte or interfere with the analysis, the analysis must be stopped, the source of contamination identified and corrected, and the analysis repeated. Contamination in the method blank above half the RLs will require that the entire associated batch of extracts or digestates be reprepared and reanalyzed. Hence, it is very important to make sure that no such contamination is present.

Laboratory Control Samples (LCS) - LCSs are pre-prepared and checked samples containing known concentrations of specific target analytes. LCSs can also be prepared by spiking known amounts of target analytes into a well-characterized blank matrix. The matrix must be analyte-free, laboratory reagent-grade water for water samples and clean sand or equivalent for soil samples.

The LCS is prepared and run at a frequency of one per 20 project samples per matrix with the associated samples, using the same reagents and volumes. If insufficient quantity of sample is available for MS/MSD, the LCS will be prepared and analyzed in duplicates

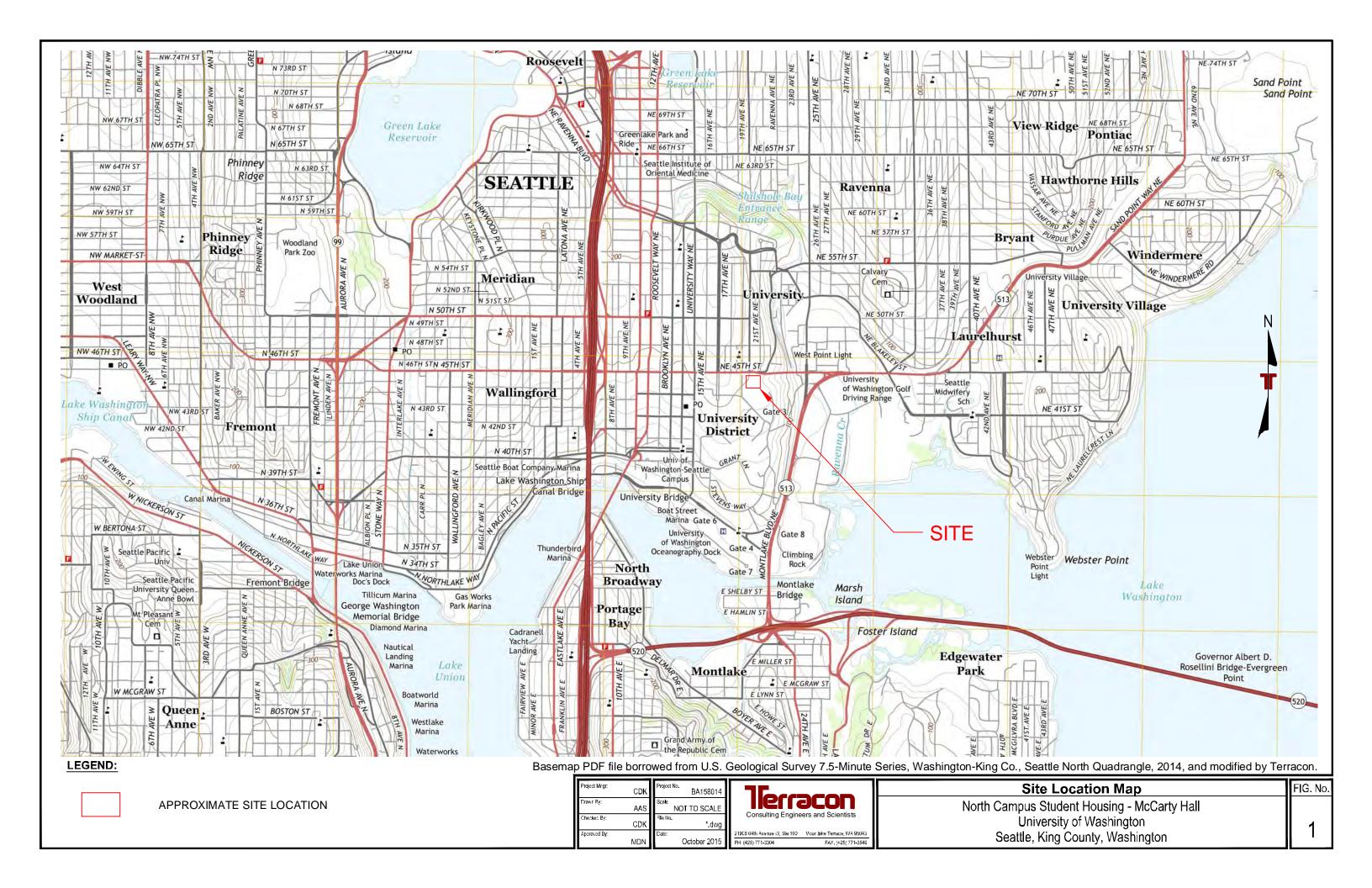
North Campus Student Housing - McCarty Hall ■ Seattle, Washington October 7, 2015 ■ Terracon Project No. BA158014

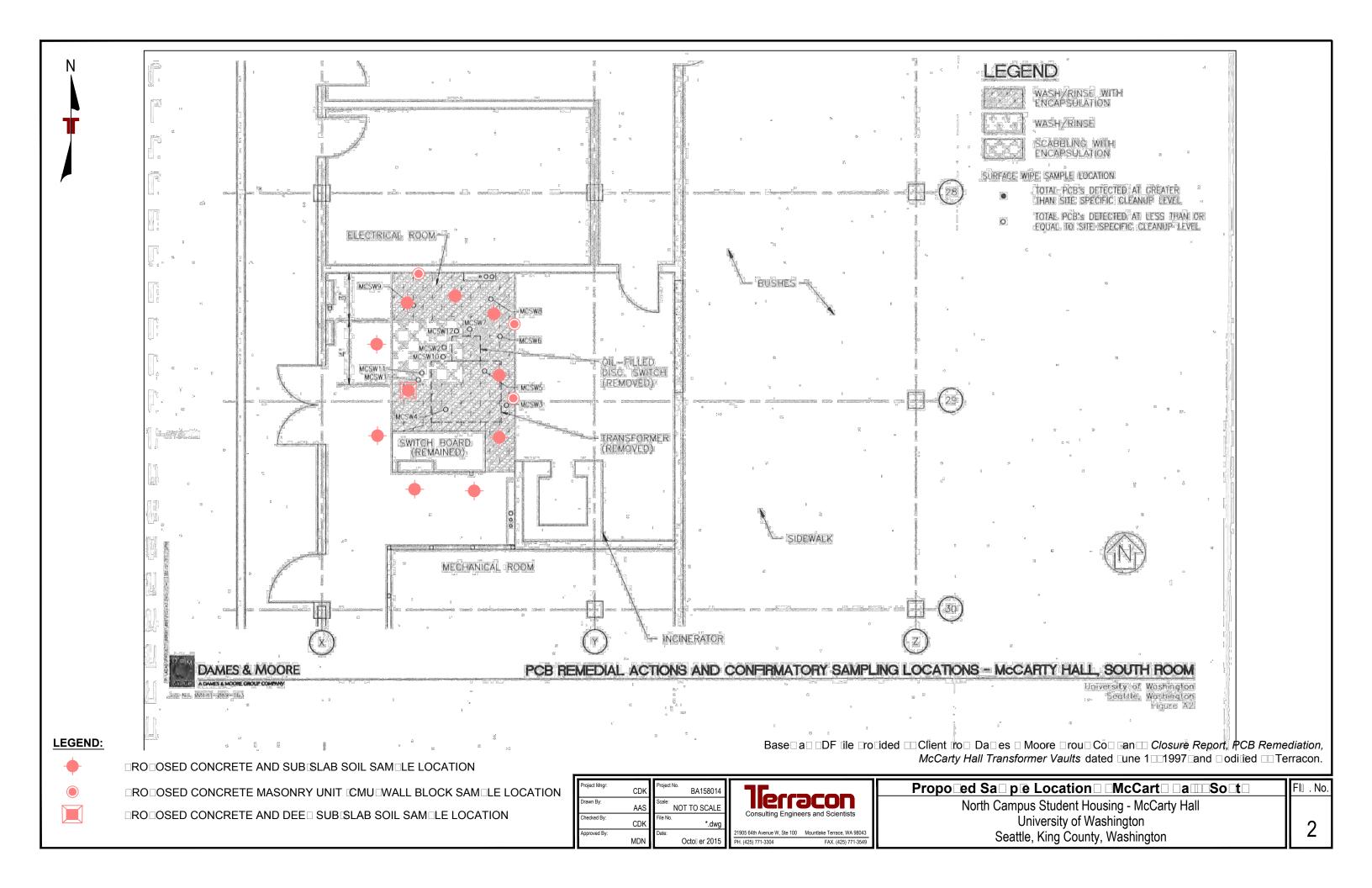
(LCSD). All analytes in the LCS must meet recovery criteria. If the criteria are not met, the entire batch of samples must be reprepared, together with a new LCS, and reanalyzed.

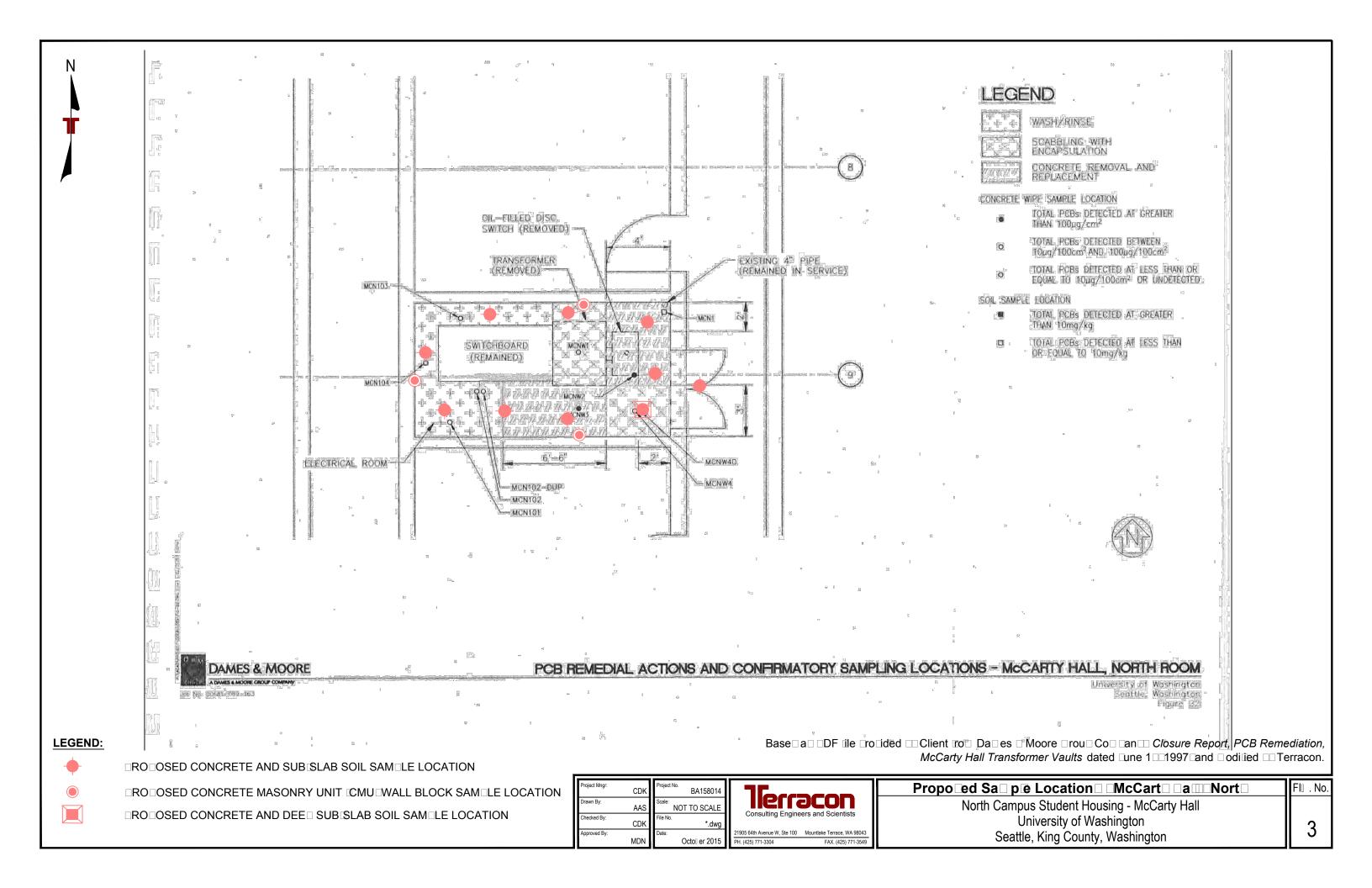
Matrix Spike and Matrix Spike Duplicate (MS/MSD) - The MS/MSD serves to determine whether matrix effects are affecting recoveries. For inorganic analyses, only a single MS is performed per batch. A MS/MSD is prepared by spiking a known amount of solution to two portions of a sample being run in a batch. Once the spike is added to the MS/MSD samples, these samples are carried through the complete sample preparation process along with the other samples in the batch. The MS/MSD recoveries are compared against each other and against the known amount of the spike.

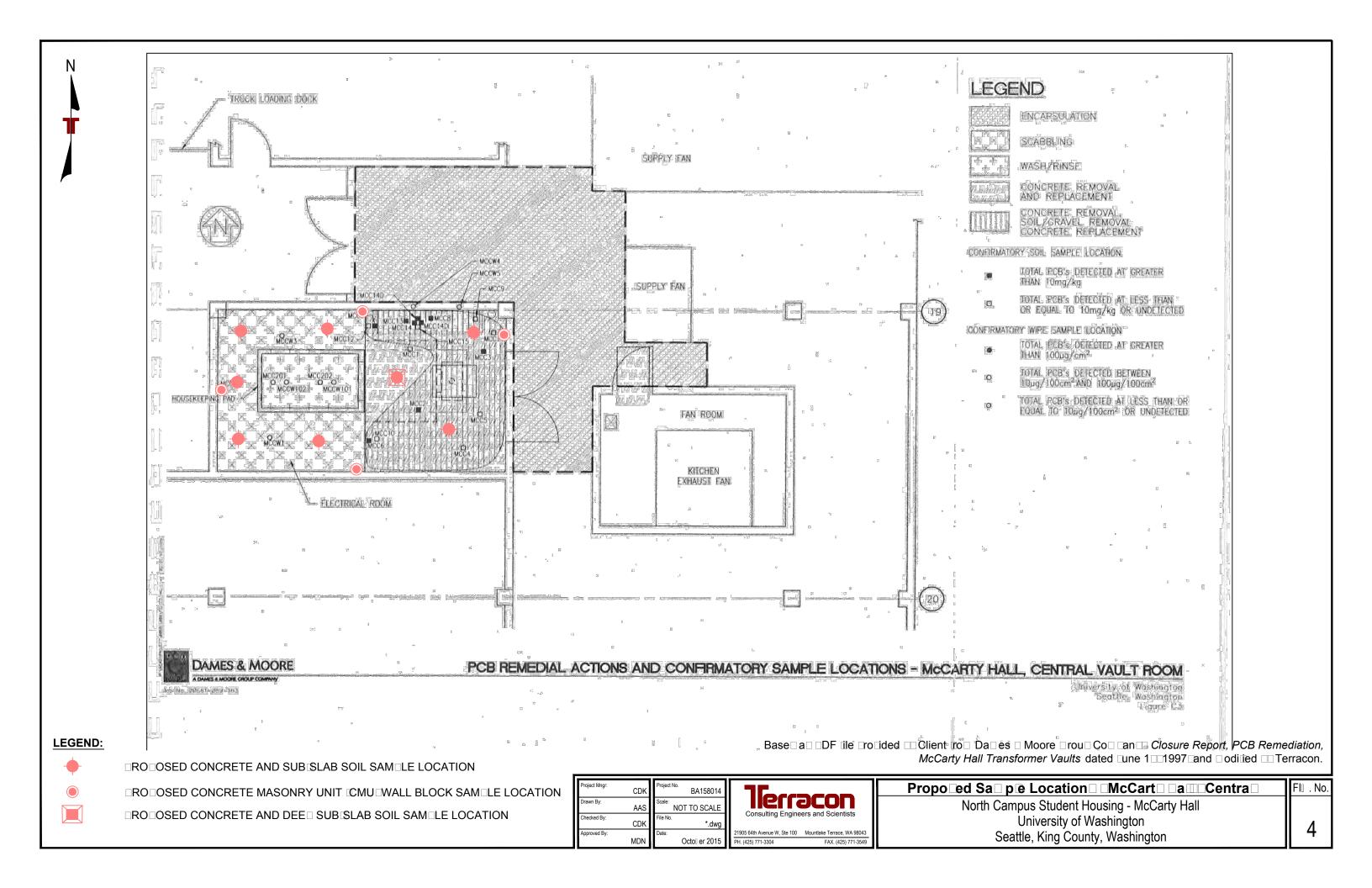
From this data, both accuracy and precision can be determined. The laboratory will perform a MS/MSD at a frequency of one per 20 project samples per matrix. To prepare a project-specific MS/MSD, field personnel will collect additional sample volumes at a frequency of one per 20 samples. Field personnel will designate samples for MS/MSD analysis on the COC record.

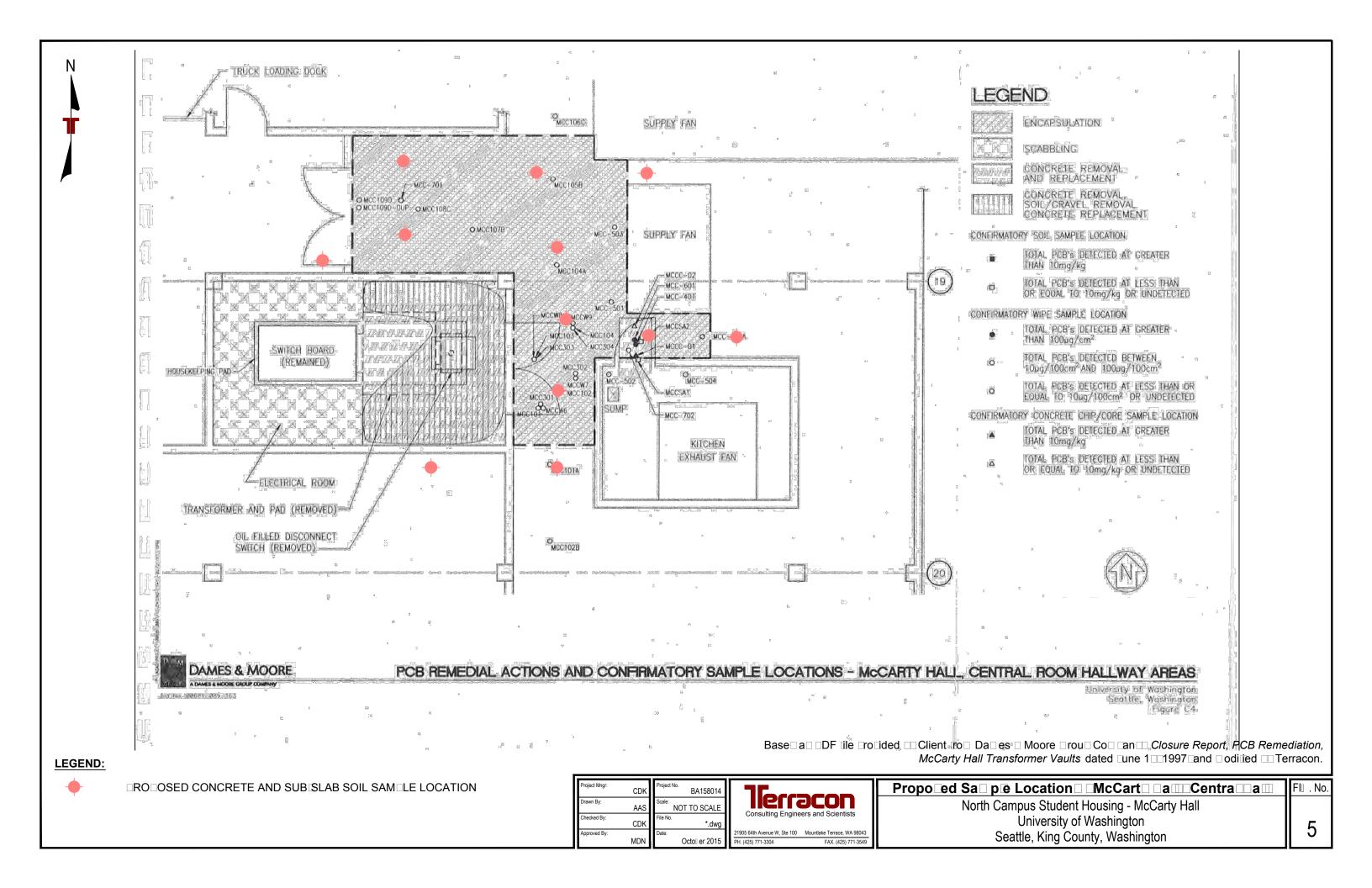
APPENDIX A


Figure 1: Site Location Map


Figure 2: Proposed Sample Locations - McCarty Hall - South


Figure 3: Proposed Sample Locations – McCarty Hall - North


Figure 4: Proposed Sample Locations – McCarty Hall - Central


Figure 5: Proposed Sample Locations – McCarty Hall - Central Hall

APPENDIX B

Dames & Moore - Closure Report PCB Remediation - June 1997

CLOSURE REPORT PCB REMEDIATION MCCARTY HALL TRANSFORMER VAULTS

For

UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON UW PROJECT NO. 1873 D&M JOB NO.: 00681-089-163 June 18, 1997

June 18, 1997

500 Market Place Tower 2025 1st Avenue Seattle, Washington 98121 206 728 0744 Tel 206 727 3350 Fax

Mr. Seth Mullen University of Washington Office of Environmental Health and Safety 411 Hall Health Center Box 354400 Seattle, Washington 98195

Closure Report
PCB Remediation
McCarty Hall Transformer Vaults
University of Washington
Seattle, Washington
UW Project No.: 1873
D&M Job No.: 00681-089-163

Dear Mr. Mullen:

Dames & Moore is pleased to submit four copies of the Final Closure Report for the PCB remediation of the McCarty Hall transformer vaults located at the University of Washington in Seattle, Washington.

The closure of the transformer vaults for McCarty Hall was conducted in accordance with the Toxics Substance Control Act (TSCA), Washington State's Model Toxics Control Act (MTCA) and the EPA-approved site-specific cleanup levels and remediation alternatives presented in the letter from the University of Washington to EPA Region 10 dated March 6, 1995. The analytical results indicated that site-specific cleanup levels have been achieved in the vaults. The PCB remedial actions are considered to be protective of human health and the environment; therefore, no further action is recommended.

We received comments from Seth Mullen on May 9, 1997 to the Draft Closure Report submitted to the University of Washington on February 28, 1997. We have incorporated those comments into Final Closure Report.

163\UW\CLOSURE2.RWP 00681-089-163

University of Washington June 18, 1997 Page 2 500 Market Place Tower 2025 1st Avenue Seattle, Washington 98121 206 728 0744 Tel 206 727 3350 Fax

We have appreciated the opportunity to work with you on this project. Please do not hesitate to call if you have any questions or require additional information.

Very truly yours,

Dames & Moore

Joanne Yan-Gur Joanne Yan-Gwo, P.E.

Project Engineer

Stephen J. Hitch Project Manager

Karen S. Nakhjiri Lead Consultant

TABLE OF CONTENTS

	F	age
EX	ECUTIVE SUMMARY E	ES-1
1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION AND LOCATION	
	2.1 SOUTH TRANSFORMER VAULT	
	2.2 NORTH TRANSFORMER VAULT	2
	2.3 CENTRAL TRANSFORMER VAULT	2
3.0	GEOLOGY AND HYDROGEOLOGY	2
10	SUMMARY OF REGULATORY REQUIREMENTS	2
4.0	4.1 FEDERAL REGULATORY REQUIREMENTS FOR PCBs	
	4.2 STATE REGULATORY REQUIREMENTS FOR PCBs	
	4.3 SELECTION OF PCB CLEANUP STANDARDS	
	4.4 VOLATILE ORGANIC COMPOUND CLEANUP STANDARDS	
5 N	CITE CHAD ACTEDIZATIONS	
3.0	SITE CHARACTERIZATIONS	5
	5.1 SOUTH TRANSFORMER VALUET	
	5.2 NORTH TRANSFORMER VAULT	6
	5.2.1 Interior Floor Surfaces	6
	5.2.3 Walls	6
	5.2.4 Underlying Soils (Pea Gravel)	6
	5.2.5 Unrestricted Access Area	6
	5.3 CENTRAL TRANSFORMER VAULT	7
	5.3.1 Switchgear	7
	5.3.2 Interior Floor Surfaces	7
	5.3.3 Exterior Floor Surfaces	8
	5.3.4 Interior Floor Concrete Cores	8
	5.3.5 Walls	8
	5.3.6 Underlying Soils (Pea Gravel)	8
6.0	APPROACH TO CLEANUP	8
	6.1 SOLVENT/DETERGENT WASHING	9
	6.2 CONCRETE SCABBLING	9
	6.3 ENCAPSULATION	9
	6.4 CONCRETE REMOVAL	10
	6.5 SOIL REMOVAL	10
	(CELECTED DEMEDIAL ADDOCACIA	10
	(7 COMPINAL TORY CAMPING	10
	(0 CLIDDLIED DIEGDLA TON	11

7.0 REMEDIAL ACTION	11
7.1 REMEDIATION OF SOUTH TRANSFORMER VAULT	11
7.1.1 Removal and Encapsulation of Vault Room Concrete Surface	11
7.1.2 Decontamination of Concrete Surface	12
7.2 REMEDIATION OF NORTH TRANSFORMER VAULT	12
7.2.1 Removal and Encapsulation of Vault Room Concrete Surface	12
7.2.2 Decontamination of Concrete Surface	13
7.3 REMEDIATION OF CENTRAL TRANSFORMER VAULT	13
7.3.1 Removal of Concrete Slab and Underlying Soil	13
7.3.2 Removal of Concrete Floor Surface	14
7.3.3 Decontamination of Wall Surface	14
7.3.4 Decontamination of the Switchgear	15
7.3.5 Additional Site Characterization and Remedial Actions in Hallway Areas .	15
8.0 INSTITUTIONAL CONTROLS	17
9.0 WASTE MANAGEMENT	17
10.0. GOVGLYGOVG	
10.0 CONCLUSIONS	18
FIGURES	
FIGURES	
Figure 1 - Site Vicinity Map	
Figure 2 - Site Plan - McCarty Hall	
riguic 2 - Ole Flair - Mecarty Hair	
APPENDICES	
Appendix A - McCarty Hall South Transformer Vault Data Tables and Figures	
Appendix B - McCarty Hall North Transformer Vault Data Tables and Figures	
Appendix C - McCarty Hall Central Transformer Vault Data Tables and Figures	
Appendix D - University of Washington Letter to Department of Ecology (3/23/95)	

Appendix E - University of Washington Letter to EPA Region 10 (3/6/95)

Appendix G - Waste Manifest Forms and Certificates of Disposal

Appendix F - Chain of Custodies, Letters of Quality Control and Assurance, and Laboratory Results

PCB REMEDIATION CLOSURE REPORT MCCARTY TRANSFORMER VAULTS UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON

EXECUTIVE SUMMARY

This report presents the results of a remedial action associated with three transformer vaults which were affected by polychlorinated biphenyls (PCBs). The three transformer vaults are located in McCarty Hall at the University of Washington in Seattle, Washington. Site characterization was conducted in the transformer vaults between November 1994 and March 1995 to determine the nature and extent of PCB contaminated material resulting from transformer oil leaks or spills. In addition, samples were collected for analysis of potential volatile organic compounds (VOCs) in the central vault. The results indicated that PCBs were present in all three transformer vaults. VOCs above regulatory cleanup levels were not identified.

Remedial activities were conducted in the south, north, and central transformer vaults in McCarty Hall between July and December 1996. Remedial activities included removal, disposal, and/or replacement of the transformers and electrical appurtenances containing PCBs; washing and rinsing of PCB contaminated concrete surfaces; scabbling PCB contaminated concrete surfaces; removal of PCB contaminated concrete slabs and underlying soils; confirmatory sampling and analysis during and following removal or decontamination activities; and waste disposal.

Concrete surfaces and underlying soils containing PCBs have been decontaminated and/or removed, encapsulated, and disposed. Institutional controls are recommended to maintain the integrity of the concrete floor encapsulation and to restrict public access.

The remedial action is considered to be protective of human health and the environment; therefore, no further action is recommended.

PCB REMEDIATION CLOSURE REPORT MCCARTY TRANSFORMER VAULTS UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON

1.0 INTRODUCTION

This document serves as the closure report for a PCB remedial action conducted for three transformer vaults (south, north and central) at McCarty Hall which were affected by polychlorinated biphenyls (PCBs). McCarty Hall is located at the University of Washington in Seattle, Washington (Figure 1), and consists of a student activity center and two dormitory buildings located from south to north along the Whitman Court Road (Figure 2).

The McCarty Hall transformers were previously filled with transformer fluid containing PCBs and the central vault transformer was retrofilled with "TF-1" in the early 1990s. The Material Safety Data Sheet (MSDS) for TF-1 indicates that the primary constituents of TF-1 are trichlorobenzene and tetrachlorobenzene isomers. Site characterizations of south, north and central transformer vaults were conducted between November 1994 and March 1995 by Dames & Moore to determine the nature and extent of PCB and potential volatile organic compound (VOC) materials resulting from transformer oil leaks and spills. The results indicated that PCBs were presented in all three transformer vaults. VOCs above regulatory cleanup levels were not identified.

Dames & Moore prepared PCB remediation design drawings and specifications for south, north, and central transformer vaults in McCarty Hall in early 1996. Remedial activities were conducted between July and December 1996. This closure report summarizes the site characterization results, describes the remediation activities, and presents post remediation confirmatory sampling results in McCarty Hall transformer vaults.

2.0 SITE DESCRIPTION AND LOCATION

McCarty Hall is comprised of three main sections: the south, central, and north areas. McCarty Hall South and Central were constructed in 1960, and McCarty Hall North was added in 1962. McCarty Hall North and South can house a total of 594 students during an academic year. McCarty Hall Central serves as a student activity center and consists of conference rooms, a piano lounge, mailbox center, and a cafeteria.

The McCarty Hall transformer vaults are located in the basement of each building, kept locked at all times, and may only be accessed by authorized personnel. PCB warning labels have been placed on the doors of the mechanical or electrical rooms where PCB remediation has been conducted.

2.1 SOUTH TRANSFORMER VAULT

The McCarty Hall South transformer vault floor plan is presented in Appendix A (Figure A1). The room is a rectangular concrete area approximately 12 feet by 17 feet and contains a transformer and switchgear. A transformer is located in the middle of the room and is approximately 3.5 feet by 4 feet.

The walls of the transformer vault are constructed of 18-inch cinder block and extend from the floor to the ceiling on every side of the vault. The cinder block walls are topped with a 6-inch concrete curb and a locking door on the west side.

2.2 NORTH TRANSFORMER VAULT

The McCarty Hall North transformer vault floor plan is presented in Appendix B (Figure B1). The room is a rectangular concrete area approximately 8.5 feet by 16 feet and contains a transformer and switchgear. All electrical appurtenances in this vault are situated directly above concrete pad. A transformer is located in the middle of the room and is approximately 3.5 feet by 4 feet.

The walls of the transformer vault are constructed of 18-inch cinder block and extend from the floor to the ceiling on every side of the vault. The cinder block walls are topped with a six-inch concrete curb and a locking door on the east side. The vault room floor is a 4-inch thick concrete slab.

2.3 CENTRAL TRANSFORMER VAULT

The McCarty Hall Central transformer vault floor plan is presented in Appendix C (Figure C1). The room is a rectangular concrete area approximately 10 feet by 18 feet and contains a transformer and switchgear. All electrical appurtenances in this vault are situated directly above concrete pad. A transformer is located in the middle of the room and is approximately 3.5 feet by 4 feet.

The walls of the transformer vault are constructed of 18-inch cinder block and extend from the floor to the ceiling on every side of the vault. The cinder block walls are topped with a 6-inch concrete curb and a locking door on the east side. The vault room floor is a 4-inch-thick concrete.

3.0 GEOLOGY AND HYDROGEOLOGY

Many of the soil formations in the Puget Sound area of Washington are the result of glacial advances and recessions. Sediments deposited during glacial advance were densely compacted by the glacial ice. Glacial outwash and till, consisting of a dense, unsorted mixture of clay, silt, sand, gravel, and cobbles were deposited as the glacier receded. Occasionally, depressions formed in the ground surface during the recession. Lakes and ponds now occupy many of these depressions, some of which have been wholly or partially filled with silt or organic peat marsh deposits.

A geologic map and hydrogeologic information indicates the site and site vicinity is underlain by unconsolidated glacial till of Quaternary age designated the Vashon till. The till is generally up to 150 feet thick and consists of a hard, unsorted mixture of clay, silt, sand and gravel which may included interbedded lenses of sand and gravel.

The outcropping glacial till is relatively impermeable although thin beds of sand and gravel in the till commonly yield small quantities of perched or semiperched groundwater. Although groundwater flow direction data were not available, based on the local topography, regional groundwater flow is expected to be south to southwesterly toward Lake Union.

4.0 SUMMARY OF REGULATORY REQUIREMENTS

PCBs and PCB regulated materials are regulated under the Toxics Substance Control Act (TSCA) and under Washington State's Model Toxics Control Act (MTCA). VOCs are regulated under MTCA.

4.1 FEDERAL REGULATORY REQUIREMENTS FOR PCBs

PCBs and PCB-contaminated materials are regulated under TSCA, 40 CFR Part 761. Subpart G of 40 CFR 761 constitutes the PCB Spill Cleanup Policy and provides numerical cleanup levels for surfaces contaminated by PCBs. The cleanup standards are based on restricted and nonrestricted access areas, frequency of contact, and type of surface. The federal Spill Cleanup Policy numerical cleanup standards that are applicable to the McCarty Hall transformer vault remediation project are:

- $10 \mu g/100 \text{ cm}^2$ for all surfaces with high frequency of contact in a non-restricted access area
- 100 μg/100 cm² for porous surfaces with encapsulation with low frequency of contact in a restricted access area
- 10 μg/100 cm² for all smooth surfaces in a restricted access area
- 10 mg/kg for soil with low frequency of contact in a restricted access area

Spills of PCB containing materials that occurred prior to May 4, 1987, are excluded from the requirements of the PCB Spill Cleanup Policy. The policy states that spills that occurred before this date require evaluation on a site-by-site basis by the EPA Regional office, since old spills are generally more difficult to clean up than fresh spills; and older spills are generally more widespread than fresh spills.

Decontamination to below numerical cleanup levels must be verified by post-cleanup sampling performed in accordance with 40 CFR 761.130. The Spill Cleanup Policy also requires that any cleanup be documented, and that records of the cleanup be maintained for 5 years.

Subpart D of 40 CFR 761 sets standards for the storage and disposal of PCBs, including soil and debris. Under 40 CFR 761.60 (a)(4), any non-liquid materials containing PCBs in concentrations of 50 mg/kg and

greater, including soil, rags and other debris, must be disposed of either in an incinerator approved for handling PCBs or in an approved chemical waste landfill.

4.2 STATE REGULATORY REQUIREMENTS FOR PCBs

PCBs released to the environment are regulated by the State of Washington under the Model Toxics Control Act (MTCA, WAC-173-340). The PCB releases that have occurred in the transformer vaults are considered to be "historical" releases. The University met the State of Washington Department of Ecology representatives to discuss the applicability of MTCA to the remedial process. It was agreed that where releases to the environment had occurred, the University was not required to participate in the MTCA process because the remedial actions were being conducted under EPA's TSCA requirements (Appendix D). This decision is consistent with the provisions in MTCA under WAC 173-340-310 (4)(d)(iii).

4.3 SELECTION OF PCB CLEANUP STANDARDS

The cleanup levels selected for remedial action at McCarty Hall were based on the PCB Spill Cleanup Policy under TSCA. The vault was located in a room that was restricted to public access and kept locked except during maintenance and inspection activities. The concrete floors and cinder block and concrete walls within the vault were considered porous surfaces.

The University met with EPA Region 10 on February 16, 1995 to discuss the University's proposed PCB remediation approach for transformer conversion projects. The University received EPA Region 10 concurrence associated with the proposed site-specific cleanup levels and remediation alternatives. As a result of this meeting, the following cleanup levels were selected for the University's PCB transformer vault remediation projects (Appendix E):

- $10 \mu g/100 \text{ cm}^2$ for all surfaces with high frequency of contact in a non-restricted access areas
- 100 μg/100 cm² for porous surfaces (concrete surfaces) with encapsulation in restricted access areas
- 10 μg/100 cm² for porous surfaces (concrete surfaces) without encapsulation in restricted access areas
- $10 \mu g/100 \text{ cm}^2$ for equipment surfaces in a restricted areas
- 10 mg/kg for soils in restricted access areas

Regulatory concrete PCB cleanup levels are not available; therefore, the soil PCB cleanup level of 10 mg/kg was used for concrete.

4.4 VOLATILE ORGANIC COMPOUND CLEANUP STANDARDS

The McCarty Hall central vault transformer was retrofilled with "TF-1" in the early 1990s. Based on the MSDS, the constituents of TF-1 are diepoxide and volatile organic compounds (VOCs), including 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2,3,4-tetrachlorobenzene, and 1,2,4,5-tetrachlorobenzene. Cleanup standards for these compounds were based on MTCA requirements. The MTCA Method B soil cleanup levels for the target VOCs are presented in Table C2 of Appendix C.

5.0 SITE CHARACTERIZATIONS

Site characterizations of the south, north, and central transformer vaults in McCarty Hall were conducted between November 1994 and March 1995 by Dames & Moore. The objectives were to 1) assess the lateral and vertical extent of PCB migration in areas identified as potential conduits; 2) evaluate the traffic areas on the floor surfaces leading to the vault entrance to see if they contained PCBs; 3) determine if remediation was necessary as part of transformer replacement; 4) determine if VOC remediation was necessary as part of transformer replacement; and 5) evaluate potential for contractor exposure during transformer removal to assist the University in determining use of proper personal protective equipment (PPE) and disposal methods.

The site characterizations were conducted by Dames & Moore in three phases. The first phase was conducted on November 28, 1994 and included the collection of surface floor wipe samples in limited switchgear areas and the collection of concrete chips samples. The second phase was conducted on December 21, 1994 and included the collection of surface wall wipes, additional floor surface wipes, concrete cores, and underlying soil samples. The third phase was conducted on March 25, 1995 and included collecting additional underlying soil samples from the central vault. The samples were analyzed for PCBs by EPA Method 8080 and the selected samples were analyzed for VOCs by EPA Method 8260. Results of the site characterization of each transformer vault are described in a report entitled "PCB Survey of McCarty Hall Transformer Vaults, June 12, 1995," and summarized in the following sections. The chain of custodies, letters of quality control and assurance, and laboratory results are also included in 1995 PCB survey report.

5.1 SOUTH TRANSFORMER VAULT

A total of 12 PCB wipe samples (MCS-01 through MCS-12) were collected from the floor surface of the south transformer vault (Appendix A, Figure A1). The analytical results are summarized in Appendix A (Table A1). Three samples (MCS-5, MCS-6, and MCS-8), located to the north and east of the transformer, contained PCB concentrations ranging from $11 \mu g/100 \text{ cm}^2$ to $580 \mu g/100 \text{ cm}^2$ which were above the $10 \mu g/100 \text{ cm}^2$ cleanup level. The highest PCB concentration was located 2 feet north of the transformer.

5.2 NORTH TRANSFORMER VAULT

The site characterization in the north transformer vault included the collection of 21 concrete floor wipe samples, 5 interior concrete floor core samples, 3 exterior (nonrestricted access area) concrete floor wipe samples, 4 interior wall wipe samples, and 1 underlying soil sample (Appendix B, Figure B1). The analytical results are summarized in Appendix B (Table B1).

5.2.1 Interior Floor Surfaces

A total of 21 PCB wipe samples (MCN-01 through MCN-14, MCN-18 through MCN-22, and MCN-27 and MCN-27-dup) were collected from the floor surfaces of the north transformer vault to assess the lateral extent of PCB migration. Wipe sample results indicated that PCBs were present at all locations in concentrations ranging from 7.8 to 2,400 μ g/100 cm². All PCB concentrations were above the 10 μ g/100 cm² cleanup level with the exception of PCB concentrations detected in samples MCN-9, MCN-11, and MCN-19. The highest PCB concentration was located directly underneath the transformer.

5.2.2 Interior Floor Concrete Cores

A total of 5 PCB concrete core samples (MCN-CC-01 through MCN-CC-05) were collected from the interior concrete floor in the north transformer vault to assess the vertical extent of PCB migration. Concrete cores 1½ inches in diameter and 2 inches in depth were drilled by personnel from the Concrete Coring Company of Kent, Washington, using a masonry drill equipped with a diamond-tipped coring bit. The concrete core samples were shipped to Analytical Resources Incorporated Laboratories (ARI) where a ¼-inch to ½-inch segment of each core was cut, crushed and analyzed. Sample MCN-CC-01 contained 390 mg/kg PCBs. The remaining samples did not detect PCBs (Appendix B, Table B1).

5.2.3 Walls

A total of 4 PCB wipe samples (MCN-23 through MCN-26) were collected from the wall surface of the north transformer vault (Appendix B, Figure B1). The samples were collected on the cinder block wall 0.45 feet from the vault floor. Three samples contained detectable PCB concentrations ranging from 0.6 to 3 μ g/100 cm² which were below the cleanup level of 10 μ g/100 cm² (Appendix B, Table B1).

5.2.4 Underlying Soils (Pea Gravel)

One pea gravel sample (MCN-SL-01-A-B) was collected at a depth of 1.5 feet below the concrete floor near the groundwire in the north transformer vault (Appendix B, Figure B1). PCBs were not detected in this soil sample (Appendix B, Table B1).

5.2.5 Unrestricted Access Area

A total of 3 wipe samples (MCN-15 through MCN-17) were collected from the concrete floors in the unrestricted access area outside the north transformer vault to determine the extent of PCB migration from personnel tracking (Appendix B, Figure B1). PCBs were detected at three wipe sample locations and ranged from a nondetected level to 1.9 μ g/100 cm² which was below the cleanup level of 10 μ g/100 cm² (Appendix B, Table B1).

5.3 CENTRAL TRANSFORMER VAULT

Site characterization activities at the McCarty Hall central transformer vault included the collection of 2 surface wipe samples from switchgear, 27 surface wipe samples from the interior concrete floor and transformer pad, 6 surface wipe samples from the exterior concrete floor surface, 4 surface wipe samples from the wall surface, 10 concrete chip or core samples from the interior vault floor, and 11 underlying soil samples. Sample locations are present in Appendix C (Figures C1 and C2). The analytical results are described below.

5.3.1 Switchgear

One wipe sample (MCC-01) was collected from the shelf inside the switchgear, and another wipe sample (MCC-02) was collected from the concrete floor at the base of the switchgear (Appendix C, Figure C1). Both samples contained PCB concentrations of 1,210 and 87 μ g/100 cm², respectively, which were above the 10 μ g/100 cm² cleanup level (Appendix C, Table C1).

5.3.2 Interior Floor Surfaces

A total of 25 PCB wipe samples (MCC-03 through MCC-21 and MCC-29 through MCC-34) were collected from the interior floor surface of the central transformer vault (Appendix C, Figure C1). Wipe sample results indicated that PCBs were present at all locations above the $10 \,\mu\text{g}/100 \,\text{cm}^2$ cleanup level, with the exception of wipe samples MCC-29 located under the vault door entrance, and wipe sample MCC-32 located at the west end of the vault room (Appendix C, Table C1). The highest PCB concentration (420,000 $\mu\text{g}/100 \,\text{cm}^2$) was located in the northeast corner of the vault room.

Two PCB concrete chip samples were collected from the expansion joint material of the interior concrete floor (CS-MCC-01) and from the cement block berm under the vault door of the central transformer vault (CS-MCC-02). Samples CS-MCC-01 and CS-MCC-02 contained 30 and 4,900 mg/kg PCBs, respectively, which were above the 10 mg/kg cleanup level (Appendix C, Table C1).

Two wipe samples were collected from the transformer pad surface (MCC-VOC-01) and the interior concrete floor (MCC-VOC-02) in the central transformer vault for VOC analyses (Appendix C, Figure C2). VOCs were either not detected or detected at trace levels (Appendix C, Table C2).

Two VOC concrete chip samples were collected from the transformer pad surface (CS-MCC-03) and the interior concrete floor (CS-MCC-04) in the central transformer vault (Appendix C, Figure C2). VOCs in both concrete chip samples were either not detected or detected at levels below the MTCA cleanup standards (Appendix C, Table C2).

5.3.3 Exterior Floor Surfaces

A total of 6 wipe samples (MCC-23 through MCC-28) were collected from the concrete floors in the egress area of the vault and from the maintenance room floor outside the central transformer vault (Appendix C, Table C1). PCBs were detected at all locations and ranged from 1.3 to 11.1 μ g/100 cm². Only wipe sample MCC-26 at 11.1 μ g/100 cm², and located 3 feet immediately to the east of the vault room door, contained a PCB concentration above 10 μ g/100 cm² cleanup level.

5.3.4 Interior Floor Concrete Cores

A total of 7 concrete core samples (MCC-CC-01 through MCC-CC-07) and one duplicate sample were collected from the interior concrete floor in the central transformer vault (Appendix C, Figure C1). PCBs were detected at all concrete core sample locations and ranged in concentration from 0.45 to 250 mg/kg PCBs (Appendix C, Table C1). Two samples (MCC-CC-01 and MCC-CC-06) and the duplicate (MCC-CC-01-dup), contained PCB concentrations above the 10 mg/kg cleanup level and were located on the east side of the vault room.

5.3.5 Walls

A total of 4 wipe samples (MCC-35 through MCC-38) were collected on the concrete walls of the central transformer vault. Only wipe sample MCC-35, at $14 \mu g/100 \text{ cm}^2$ and located approximately 7 inches from floor surface, contained a PCB concentration above the $10 \mu g/100 \text{ cm}^2$ cleanup level.

5.3.6 Underlying Soils (Pea Gravel)

Ten underlying pea gravel samples and one field duplicate sample were collected beneath the central transformer vault (Appendix C, Figure C1). Pea gravel samples were collected at depths of up to 2.4 feet below the top of the gravel at each location in the vault room. PCBs were detected in 6 pea gravel samples and ranged from undetected to 650 mg/kg. Samples MCC-SL-01A-B and MCC-SL-01B contained PCB concentrations above the 10 mg/kg cleanup level (Appendix C, Table C1). The highest PCB concentration was located northeast of the transformer.

6.0 APPROACH TO CLEANUP

The University and Dames & Moore evaluated several remedial alternatives for removing and decontaminating PCB contaminated materials associated with the transformer vaults which would achieve site-specific cleanup standards. The remedial alternatives were described in a Dames & Moore report

entitled "PCB Survey of McCarty Hall Transformer Vaults" dated June 12, 1995. The evaluation included assessing remedial options associated with decontaminating and/or removing materials contaminated with PCBs, and encapsulation. The techniques are described below.

6.1 SOLVENT/DETERGENT WASHING

Solvent/detergent washing was considered an appropriate method to decontaminate PCBs on the concrete pad surface, floor surfaces in unrestricted public access areas, and floor surfaces in narrow spaces where scabbling is not feasible or physically inaccessible. This technique was considered where PCBs were detected above $10~\mu g/100~cm^2$ on surfaces in unrestricted access areas. This method was also considered where concrete transformer pads contain localized "hot spots" rather than lateral and vertical PCB contamination. The effectiveness of washing is dependent on the surface condition, the extent of the affected area and the PCB concentration.

CAPSUR wash solvent was used during chemical cleaning of the concrete floor and wall surfaces. It is an aqueous based solvent with emulsifiers developed for the cleanup of PCBs spills on solid surfaces. Approximately 0.07 gallons of waste per square foot area cleaned is generated with each cleanup application. The residue contains approximately 75 percent water.

6.2 CONCRETE SCABBLING

Scabbling is an effective approach to removal of the PCB contamination on concrete surfaces. This method was considered where PCBs were detected in concrete core samples and where surface wipe sample concentrations of PCB concentrations above $100 \mu g/100 \text{ cm}^2$ were detected.

Scabbling consists of the dustless removal of a minimum of 1/16 inch from the floor surface using a diamond abrasive grinder and/or needle guns. The grinder and/or needle guns are equipped with dust shrouds and connected to a dust vacuum equipped with HEPA filters. The vacuum generates a negative air flow to minimize spreading of PCB contaminated dust.

6.3 ENCAPSULATION

Encapsulation was considered an appropriate remediation approach for surfaces where solvent detergent washing and scabbling remediation techniques cannot achieve site-specific cleanup levels. Encapsulation provides a layered protective coating over PCB contaminated surface to eliminate exposure routes. Sika epoxy coating bonds well to all common structural substrates, is resistant to chemicals and abrasion, and provides a durable, smooth finish that allows for easy wipe-off. Institutional controls are recommended with this approach since PCBs will remain in place and a potential exists that, with time, the coating may become damaged or decayed, allowing potential exposure of PCBs. The institutional controls may include routine integrity inspections of the coating and subsequent repair (if necessary), and postage of signs that indicate the presence of PCBs.

6.4 CONCRETE REMOVAL

Concrete removal was considered for surfaces where core samples indicated that the PCB concentration was above the cleanup level beyond the depth at which scabbling is effective, or where soil contamination above PCB cleanup levels was present.

Concrete removal was performed in a sealed environment with HEPA filtered fans providing a negative pressure ventilation of the space to prevent spreading of PCB contaminated dust. The areas to be removed were sawcut and then removed using mechanical methods.

6.5 SOIL REMOVAL

Soil removal was considered where PCBs above 10 mg/kg were detected in underlying soil samples. Following soil removal, confirmatory soil samples were collected. When soil sample results indicated PCB concentrations at levels below the cleanup standard of 10 mg/kg, soil removal was deemed complete.

6.6 SELECTED REMEDIAL APPROACH

McCarty Hall South, Central, and North transformer vaults are considered restricted access indoor vaults. The selected method of remediation for all PCB contaminated materials identified in McCarty Hall included:

- decontamination of concrete floor surfaces through mechanical or chemical cleaning methods
- removal of PCB contaminated concrete slabs and underlying soils
- encapsulation of the exposed concrete surfaces contaminated with PCBs at a level above $10 \mu g/100 \text{ cm}^2$ but less than $100 \mu g/100 \text{ cm}^2$
- confirmatory sampling and analysis
- disposal of all wastes generated from the cleaning and removal process in accordance with state and federal regulations

During decontamination and concrete surface removal activities, poly-sheeting was taped at the entrance door to completely seal the room. The vault was ventilated with a fan, and the air in the room was drawn under a negative pressure through HEPA and charcoal filters before venting outside. All wastes generated were contained in 55-gallon drums, 1-yard boxes, or bulk roll-off containers. Wastes were disposed of within 30 days after they were generated.

6.7 CONFIRMATORY SAMPLING

Confirmatory samples were collected after mechanical or chemical cleaning of the concrete floor surfaces to determine compliance with site-specific cleanup standards. Wipe samples were collected in accordance with the sampling procedure and handling protocols for wipe samples as described in 40 CFR 761.130

and the applicable EPA guideline documents (Verification of PCB Spill Cleanup by Sampling and Analysis and Wipe Sampling and Double Wash/Rinse Cleanup as recommended by the EPA Spill Cleanup Policy).

6.8 SUPPLIER INFORMATION

CAPSUR Wash Solvent:

Supplier Name:

Integrated Chemistry, Inc.

Supplier Address:

1970 Oakcrest Avenue, Suite 215

St. Paul, MN 55113

Supplier Phone:

(612) 636-2380

Epoxy Sealant:

Supplier Name:

Atlas Supply

Supplier Address:

1736 4th Avenue South

Seattle, WA 98134

Supplier Phone:

(206) 623-4697

7.0 REMEDIAL ACTION

The University contracted with Amaya Electric to remove and replace the south, north and central transformers. Alcan Environmental was a subcontractor of Amaya Electric hired to perform transformer removal, PCB remediation, and PCB disposal. Alcan hired Envirotech Systems, Inc. to arrange for PCB transportation and disposal. Wastes generated during remediation were manifested and transported to various disposal facilities in Oregon, Kentucky, Ohio, Texas, and Utah. Dames & Moore collected confirmatory samples following decontamination and/or the removal of concrete surfaces and underlying soils. Copies of laboratory reports and chain of custodies are presented in Appendix F. The remedial action was conducted between July and December 1996.

7.1 REMEDIATION OF SOUTH TRANSFORMER VAULT

PCB remediation in the south transformer vault included decontamination of concrete surfaces by washing and rinsing, scabbling, and encapsulation. The remedial actions and confirmatory sample results are described below. PCB remedial actions and wipe sample locations in the south transformer vault are summarized in Appendix A (Figure A2). The analytical results are summarized in Appendix A (Table A2).

7.1.1 Removal and Encapsulation of Vault Room Concrete Surface

In August 1996, Alcan scabbled the top 1/8-inch of a 4-foot by 4-foot section of concrete floor located to the northwest of the former transformer. The concrete surface was removed using a blastrak machine.

Two wipe samples (MCSW1 and MCSW2) were collected from the concrete scabbled area. The analytical results indicated a PCB concentration of 23 μ g/100 cm² at sample location MCSW-2 which was greater

than $10 \mu g/100 \text{ cm}^2$ cleanup level. Based on these results, the surfaces were then encapsulated with three coats of epoxy paint. The three layers were color were coded in gray, tan and red from top to bottom.

7.1.2 Decontamination of Concrete Surface

In August 1996, Alcan decontaminated the concrete floor surfaces immediately north, east, and directly under the transformer in the south transformer vault by washing and rinsing. The area of decontamination is presented in Appendix A (Figure A2). Decontamination activity included washing all exposed areas with CAPSUR wash solvent and rinsing with water to remove PCB contamination. The washing and rinsing process was conducted three times.

After washing and rinsing the PCB contaminated surfaces, 10 surface wipe samples (MCSW3 through MCSW12) were collected (Appendix A, Figure A2). Two samples (MCSW4 and MCSW5) located on the footprint of the former transformer, contained PCBs at levels below $100 \mu g/100 \text{ cm}^2$ but above the $10 \mu g/100 \text{ cm}^2$ cleanup level (Appendix A, Table A2). Based on these results, the surfaces were then encapsulated with three coats of epoxy paint. The three layers were color coded in gray, tan, and red from top to bottom.

7.2 REMEDIATION OF NORTH TRANSFORMER VAULT

PCB remediation in the north transformer vault included decontamination of concrete surfaces by washing and rinsing, scabbling, encapsulation, and removal of concrete slabs and underlying soils. The remediation actions and confirmatory sample results are described below. PCB remedial actions and wipe sample locations in the north transformer vault are summarized in Appendix B (Figure B2). The analytical results are summarized in Appendix B (Table B2).

7.2.1 Removal and Encapsulation of Vault Room Concrete Surface

Concrete removal in the north transformer vault included scabbling 1/8 inch of the concrete floor surface and the removal of a 4-inch concrete floor slab (Appendix B, Figure B2). The floor surfaces located immediately north and directly below the former transformer and southeast corner of vault were scabbled by Alcan using a blastrak machine. The concrete floor slabs located in the northeast corner and south center of the vault room were removed using a concrete saw and a large jack hammer.

On August 21, 1996 one soil sample (MCN1) located 7 inches below ground surface (bgs) was collected (Figure B2). Sample MCN1 contained 1.6 mg/kg PCBs which was below the 10 mg/kg cleanup level. Soil removal was terminated and a new concrete slab was installed.

Four surface wipe samples (MCNW1 through MCNW4) and one field duplicate sample (MCNW4D) were collected on the concrete scabbled area. Samples MCNW1 and MCNW4D contained 11 μ g/100 cm² PCBs. The area on top of the former transformer pad was then encapsulated with three coats of epoxy paint. The three layers were color coded in gray, tan, and red from top to bottom.

Two samples (MCNW2 and MCNW3) contained PCB concentrations above $100 \mu g/100 \text{ cm}^2$. Based on these results, the concrete slabs in the locations of sample MCNW2 and MCNW3 were removed.

7.2.2 Decontamination of Concrete Surface

In September 1996, Alcan decontaminated the surfaces of the concrete floor west of the former transformer (Figure B2). Decontamination activity included washing all exposed areas with CAPSUR wash solvent and rinsing with water to remove PCB contamination. The washing and rinsing was completed three times.

Four surface wipe samples (MCN101 through MCN104) and one field duplicate sample (MCN102-DUP) were collected after washing and rinsing of the PCB contaminated surface. All samples contained PCB concentrations below the cleanup standard of $10 \mu g/100 \text{ cm}^2$.

7.3 REMEDIATION OF CENTRAL TRANSFORMER VAULT

PCB remediation in the central transformer vault included decontamination of concrete surfaces by washing and rinsing, scabbling, encapsulation, and removal of concrete slab and underlying soil. The remediation actions and confirmatory sample results are described below. PCB remedial actions and wipe sample locations in the central transformer vault are summarized in Appendix C (Figures C3 and C4). The analytical results are summarized in Appendix C (Tables C3 and C4).

7.3.1 Removal of Concrete Slab and Underlying Soil

In July 1996, Alcan began removing the 4-inch concrete floor slab and underlying soils in the eastern portion of the vault room. The concrete slab to be removed was 9 feet by 10 feet. The underlying soils were removed to a depth of 8 inches bgs.

The soil under the concrete slab was light gray pea gravel which typically slumps to an angle of repose of about 45 degrees when it is not supported. In order to excavate this type of soil, Alcan had to shore the material to keep it in place using a 4-foot wood shoring box.

Between August 7 through August 14, 1996 nine soil samples (MCC1 through MCC9) were collected at various depth from 8 to 24 inches bgs. Five soil samples (MCC2, 3, 6, 7, and 8) contained PCB concentrations above the cleanup standard of 10 mg/kg. Soils in the area of samples MCC2, MCC3, and MCC6 were further removed to a depth of 20 inches bgs. Two soil samples (MCC10 and MCC11) were then collected at the bottom of the excavations. The analytical results indicated that both sample contained PCB concentrations below the cleanup standard of 10 mg/kg.

During the course of soil removal activity, pea gravel sloughed from beneath the concrete masonry unit (CMU) wall and adjoining floor slab to a distance greater than 2 feet. According to an inspection by

Dames & Moore's geotechnical engineer, the pea gravel extends to an indeterminable depth, and further excavation would result in the danger of structural instability of the adjoining walls and floor slabs.

PCB contaminated soils in the area of samples MCC7 and MCC8 were further removed to a depth of 26 inches bgs. Two soil samples (MCC12 and MCC13) were collected at the bottom of the excavations. Sample MCC13 contained 48 mg/kg PCBs, which was still above the 10 mg/kg cleanup level. Underlying soils in the area of sample MCC13 were further removed to a depth of 34 inches bgs. Three soil samples (MCC14 through MCC14D1) were collected at the bottom of the excavation. The analytical results indicated PCB concentrations ranging from 15 to 190 mg/kg. A metal shoring box was installed to allow for excavation to a greater depth.

Additional soil was then removed to a depth of 39 inches bgs, and soil sample MCC15 was collected at the bottom of the excavation. The analytical results indicated the PCB concentration was below the cleanup standard of 10 mg/kg. Soil removal was terminated, the excavated areas were backfilled, and a new concrete slab was installed.

7.3.2 Removal of Concrete Floor Surface

Alcan scabbled the top 1/8-inch of concrete from the floor surface in the western portion of the vault room. The concrete was removed using a blastrak machine.

Three surface wipe samples (MCCW1 through MCCW3) were collected in the western portion of the vault room after scabbling was completed. All samples contained PCB concentrations at levels below the cleanup standard of $10 \mu g/100 \text{ cm}^2$.

7.3.3 Decontamination of Wall Surface

Alcan decontaminated the CMU wall surface by washing and rinse. The area of decontamination was between the floor elevation and 2 feet above that elevation for approximately 9 feet of the east half of the north wall section. Decontamination activity included washing all exposed areas with CAPSUR wash solvent and rinsing with water to remove PCB contamination. The wash and rinse procedure was conducted three times.

On August 28, 1996, two wipe samples (MCCW4 and MCCW5) were collected from the decontaminated area. All samples contained PCB concentrations at levels below the cleanup standard of $10 \mu g/100 \text{ cm}^2$.

7.3.4 Decontamination of the Switchgear

On September 7, 1996 Alcan decontaminated the surfaces of the bottom metal frame inside the switchgear using CAPSUR wash solvent. The washing and rinsing process conducted three times. The area of decontamination was approximately 3 feet by 6 feet. Two surface wipe samples (MCCW101 and MCCW102) were collected on the same day after washing and rinsing were completed. Sample MCCW102, which was located next to the former transformer, contained PCB concentrations above the cleanup standard of $10 \mu g/100 \text{ cm}^2$.

On September 25, 1996 Alcan washed and rinsed inside the switchgear again. Following washing and rinsing, two surface wipe samples (MCC201 and MCC202) were collected on the same day (Appendix C, Figure C4). PCB concentrations were below the cleanup standard of $10 \mu g/100 \text{ cm}^2$.

7.3.5 Additional Site Characterization and Remedial Actions in Hallway Areas

Following an initial remediation conducted in the hallway area, additional concrete surfaces containing PCBs above the established cleanup levels were identified during the confirmatory sampling and analysis. PCB-containing concretes were either decontaminated or removed and disposed of. The hallway area was encapsulated. This section provides the chronological description of remediation activities conducted in the hallway area.

Alcan decontaminated the concrete floor surface in front of the vault room in the restricted hallway. The decontamination activity included washing all exposed areas with CAPSUR wash solvent and rinsing with water to remove PCB contamination. The washing and rinsing process was conducted three times.

On August 28, 1996, four surface wipe samples (MCCW6 through MCCW9) were collected from the area in front of the vault room door after washing and rinsing the PCB contaminated surface. Two samples (MCCW7 and MCCW8) located in front of the vault room door in the restricted hallway, contained PCB concentrations (32 and $14 \mu g/100 \text{ cm}^2$, respectively) above the cleanup standard of $10 \mu g/100 \text{ cm}^2$.

On September 23, 1996, an additional 4 surface wipe samples (MCC101 through MCC104) were collected in the same area and all samples contained PCBs above the cleanup standard of $10 \mu g/100 \text{ cm}^2$.

On September 26, 1996 Alcan decontaminated the concrete surface in front of the vault room door for the second phase with CAPSUR wash solvent. The washing and rinsing process was conducted three times. Following the washing and rinsing, four surface wipe samples (MCC301 through MCC304) were collected on the same day. Three samples contained PCB concentrations above the cleanup standard of $10 \mu g/100 \text{ cm}^2$. This suggested that the wash and rinse procedure was not effective in removing PCB contamination from the floor surface at this location. The floor was encapsulated.

On October 8, 1996, 10 additional samples (MCC101A through MCC109D) were collected in the restricted hallway outside the central transformer vault (Appendix C, Figure C4). The objective was to assess if additional tracking of the PCB contamination from inside the vault room had occurred. The samples were collected sequentially along pathways from the vault room to the adjacent mechanical room along the hallway leading to McCarty Central's loading dock. Samples MCC101A and MCC104A, which located near the identified contaminated area, were first analyzed for PCBs. Sample MCC104A contained a PCB concentration (23 μ g/100 cm²) above the cleanup standard of 10 μ g/100 cm².

Two wipe samples (MCC105B and MCC107B), located adjacent to MCC104A were then analyzed and found to contain 6.9 and 15 μ g/100 cm² PCBs, respectively. Sample MCC108C was then analyzed and contained 5.7 μ g/100 cm² PCBs.

To assess the extent of PCB contamination through tracking, an additional two surface wipe samples (MCC-401 and MCC-402A) were collected in front of the fan room located east of the central transformer vault on October 25, 1996. Sample MCC-401 contained an elevated PCB concentration of 430 μ g/100 cm². On December 7, 1996 Alcan scabbled the top $\frac{1}{6}$ -inch of concrete from the floor surface within a 1 foot radius of the location of sample MCC-401. On December 9, 1996 one surface wipe sample MCC-601 was collected in the middle of the scabbled area, and the result indicated a PCB concentration of 990 μ g/100 cm², well above the cleanup standard of 10 μ g/100 cm².

On December 13, 1996 an additional two concrete chip samples (MCCC-01 and MCCC-02) were collected at the north and south ends of the scabbled area. Sample MCCC1 contained a PCB concentration (4,200 mg/kg) above the cleanup standard of 10 mg/kg. Based on these analytical results, the concrete slab in the doorway of fan room was removed. On January 21, 1997, two soil samples (MCCSA1 and MCCSA2) were collected after the concrete slab was removed. Both samples contained PCBs at levels below the cleanup level of 10 mg/kg. A new concrete slab was installed at the same location (Appendix C, Figure C4).

On November 5, 1996 an additional four surface wipe samples (MCC 501 through MCC 504) were collected (Appendix C, Figure C4). Two samples (MCC 502 and MCC 504) were collected in the fan room, and other two samples (MCC 501 and MCC 503) were collected along the walking track from fan room to the hallway. Only sample MCC 503 contained $11 \mu g/100 \text{ cm}^2$ PCB concentration, which is above the cleanup standard of $10 \mu g/100 \text{ cm}^2$. The entire hallway area was encapsulated with three coats of epoxy paint. On March 4, 1997, two wipe samples (MCC-701 and MCC-702) were collected from the encapsulated surfaces in the hallway area. PCBs were not detected in these samples.

8.0 INSTITUTIONAL CONTROLS

The University has established an institutional control program to restrict access to the vault (signs are posted) and to maintain the integrity of the encapsulated surfaces as follows:

- The areas in the vault where concrete was removed or scabbled were encapsulated with three layers of color-coded paint (from top to bottom) in the colors of gray, tan, and red. Annual visual inspections of these painted areas will be conducted to identify and repair areas where the paint has eroded to maintain the integrity of the epoxy encapsulation paint. If any yellowing of the encapsulation paint is observed during these inspection, a fresh layer (or touch up) of yellow epoxy encapsulation paint will be applied immediately followed by a fresh layer of gray epoxy encapsulation paint. If the red layer of the encapsulation paint is observed, a fresh layer or touch up of red, yellow, and gray will be applied.
- Access is restricted to the vault rooms by a locked door to allow only University maintenance personnel entrance to the vault rooms.
- A sign will be posted inside the room that reads as follows: "This room is the site of a hazardous waste cleanup operation. Polychlorinated Biphenyl (PCB) contamination has been encapsulated beneath the floor. The paint on the floor is color coded. Should any yellow or red paint be exposed, notify Environmental Health & Safety (EH&S) (543-9510) immediately. Do not remove any of the floor without first obtaining approval from EH&S."

9.0 WASTE MANAGEMENT

This section details the waste removal, transport, and disposal methods for wastes generated during the PCB remediation at McCarty Hall. PCB contaminated wastes generated during McCarty Hall remediation were managed as TSCA waste. The waste manifest forms and certificates of disposal are presented in Appendix G.

Envirotech Systems, Inc., a licensed hazardous waste transporter, provided waste removal and management supports during McCarty Hall remediation. The waste removal, transport, and disposal procedures during remediation is consistent with TSCA and Department of Transportation (DOT) removal and transporting procedures. Regulated wastes generated during the project included PCB contaminated materials and RCRA wastes associated with washing/rinsing fluids.

PCB contaminated materials contained in DOT specification 55-gallon drums and other containers were labeled, assigned PCB tracking numbers, sampled, profiled, and manifested prior to transportation. The wastes were transported by Envirotech, Hazmat Environmental Group and HVTS. They were profiled as decontamination water containing PCBs, PCB transformers, transformer fluid, concrete chunks and

debris, personal protective equipment (PPE), rags, and sawdust contaminated with PCBs. The wastes were transported to Henderson, Kentucky, Kingman, Arizona, Aragonite, Utah, Arlington, Oregon, and Deer Park, Texas. They were disposed at the facilities located in Hendreson, Kentucky, Tallmadge, Ohio, Aragonite, Utah, Arlington, Oregon, and Deer Park, Texas.

10.0 CONCLUSIONS

A remedial alternative was conducted to achieve the site-specific cleanup levels. Remedial activities included:

- 1. removal, disposal, and/or replacement of electrical appurtenances containing PCBs
- 2. washing and rinsing of concrete surfaces contaminated with PCBs
- 3. scabbling PCB-contaminated concrete surfaces
- 4. removal of PCB-contaminated underlying soil up to a depth of 39 inches
- 5. removal of PCB-contaminated concrete slabs
- 6. confirmatory wipe sampling and analysis during and following removal or decontamination activities
- 7. waste disposal

Based on the results of the remedial action, Dames & Moore concludes the following:

- PCB contaminated materials including concrete floors, soils, and other electrical appurtenances have been removed, disposed of, and/or successfully encapsulated.
- Institutional controls are implemented to maintain the integrity of the concrete floor encapsulations and to restrict public access.
- The remedial action is considered to be protective of human health and the environment; therefore, no further action is recommended.

SOURCE: The University of Washington Campus and Vicinity, 1993

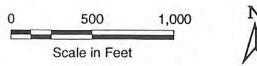
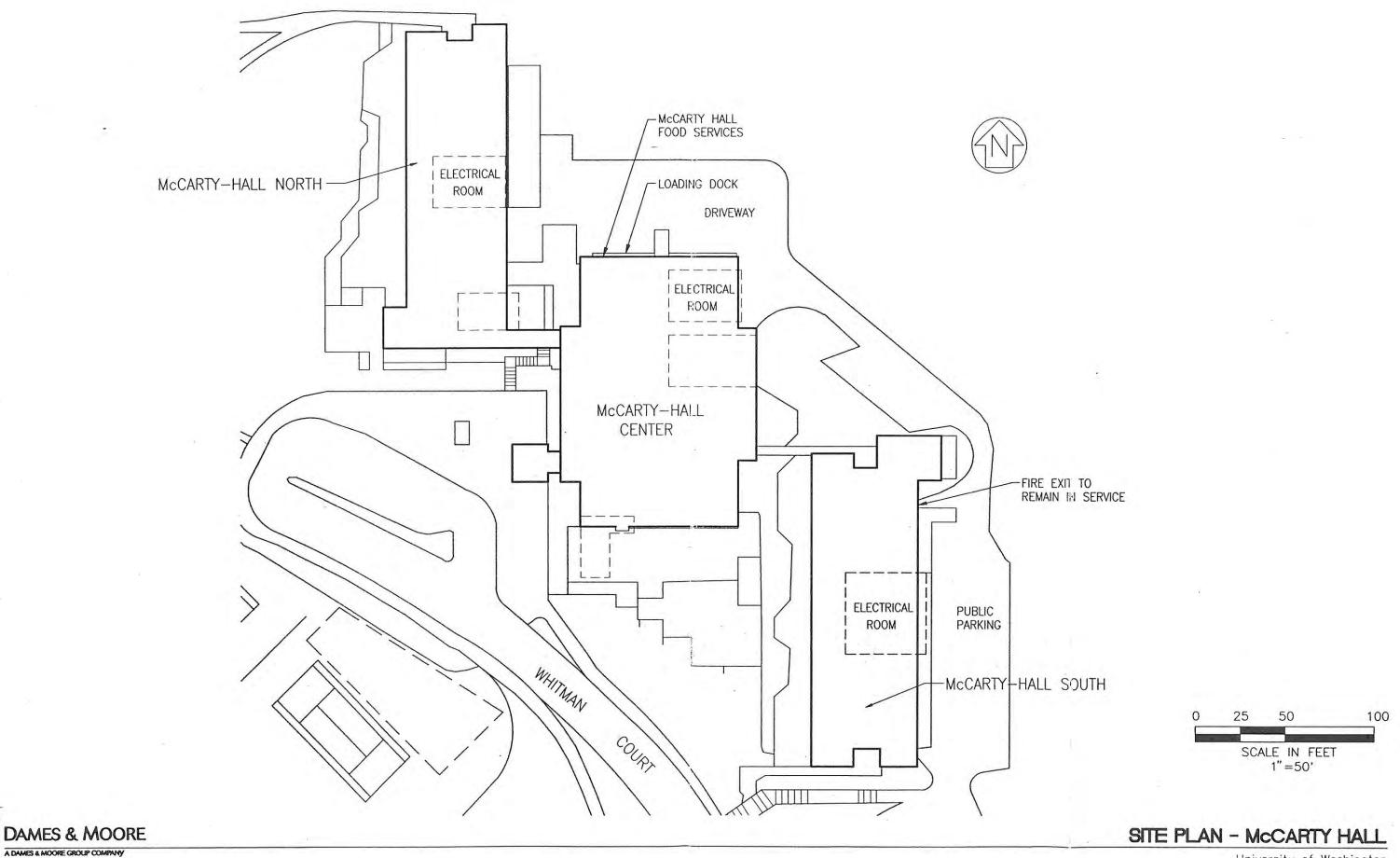



Figure 1
SITE VICINITY MAP

Job No. 00681-089-163

University of Washington Seattle, Washington Figure 2

APPENDIX A

MCCARTY HALL SOUTH TRANSFORMER VAULT

DATA TABLES AND FIGURES

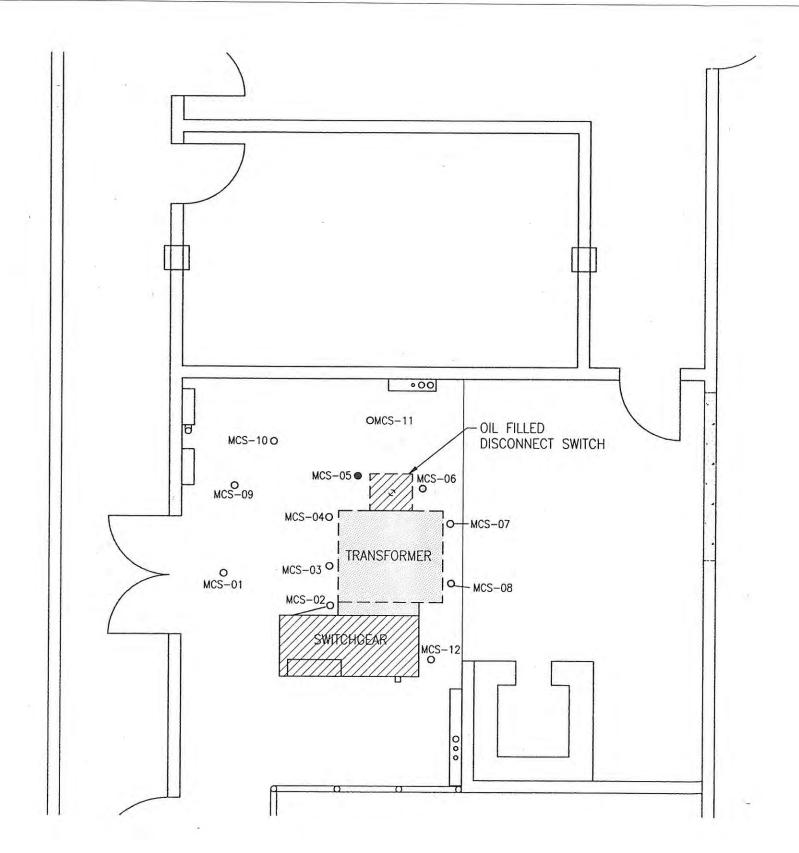
Table A1: PCB Site Characterization Sampling Results
McCarty Hall, South Transformer Vault
University of Washington

		*	Wipe 5	Sample
Sample Type	Sample Date	Sample ID	Results Total PCBs (µg/100 cm²)	Cleanup Level (µg/100 cm²)
Wipe	28-Nov-94	MCS-01	0.7 E	10
		MCS-02	1.1	10
. 18	1	MCS-03	6.7	10
		MCS-04	2.4	10
		MCS-05	580	10
		MCS-06	26	10
		MCS-07	8.8	10
- 4		MCS-08	11	10
9.9	21-Dec-94	MCS-09	1.2 U	10
		MCS-10	0.5 J	10
- 94		MCS-11	0.6 J	10
		MCS-12	0.5 J	10

Notes:

- E Estimated quantity.
- U Undetected at quantitation limit.
- J Estimated value, result was less than detection limit.

Bold - PCB concentrations above the cleanup levels.

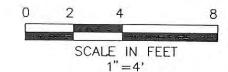

Table A2: PCB Remediation Confirmatory Sampling Results
McCarty Hall, South Transformer Vault
University of Washington

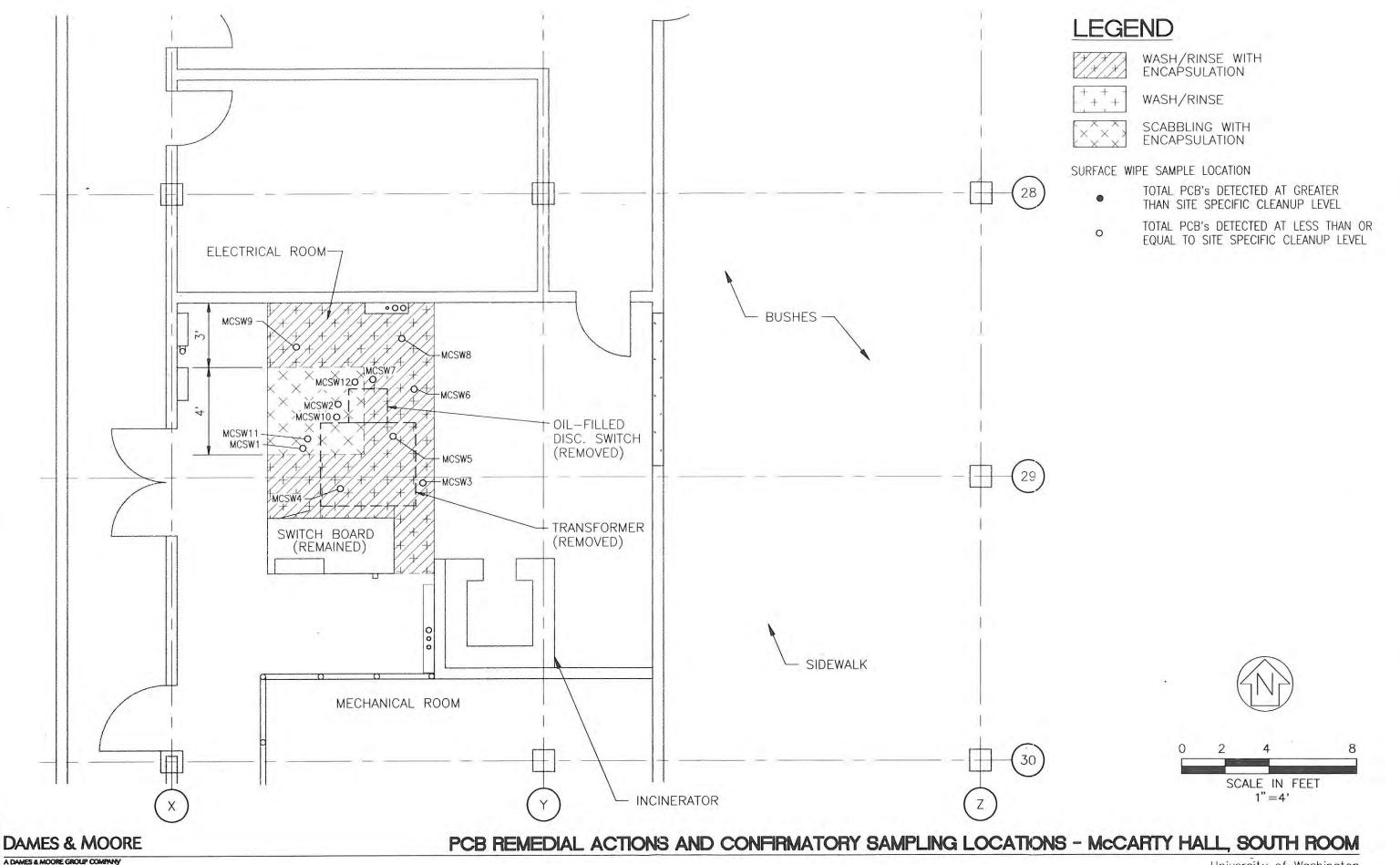
		, A - 1		Wipe Sample	
Sample Type	Sample Date	Sample ID	Results Total PCBs (µg/100 cm²)	Further Remedial Actions	Cleanup Level (µg/100 cm²)
Wipe	19-Aug-96	MCSW1	8.9	Encapsulation	100
		MCSW2	23	Encapsulation	100
- 1	28-Aug-96	MCSW3	7	Encapsulation	100
		MCSW4	15	Encapsulation	100
		MCSW5	35	Encapsulation	100
		MCSW6	10	Encapsulation	100
		MCSW7	5.7	Encapsulation	100
- 1		MCSW8	1.0 U	Encapsulation	100
		MCSW9	1.4	Encapsulation	100
- 1		MCSW10	1.6	Encapsulation	100
		MCSW11	1.0 U	Encapsulation	100
		MCSW12	4.8	Encapsulation	100

Notes:

U - Undetected at quantitation limit.

Bold - PCB concentrations above the cleanup levels.


TRANSFORMER



SWITCHGEAR OR LOAD BREAK SWITCH

CONCRETE WIPE SAMPLE LOCATION

- TOTAL PCB's DETECTED AT GREATER THAN 100µg/100cm²
- o TOTAL PCB's DETECTED BETWEEN 10µg/100cm² AND 100µg/100cm²
- o TOTAL PCB's DETECTED AT LESS THAN OR EQUAL TO 10µg/100cm² OR UNDETECTED

Job No. 00681-089-163

University of Washington Seattle, Washington Figure A2

APPENDIX B

MCCARTY HALL NORTH TRANSFORMER VAULT

DATA TABLES AND FIGURES

Table B1: PCB Site Characterization Sampling Results
McCarty Hall, North Transformer Vault
University of Washington

			Wipe Sa	ımple
Sample Type	Sample Date	Sample ID	Results Total PCBs (μg/100 cm²)	Cleanup Level (µg/100 cm²)
Floor Wipe	28-Nov-94	MCN-01	29	10
(vault room)		MCN-02	240	10
		MCN-03	380	10
		MCN-04	2400	10
		MCN-05	82	10
		MCN-06	200	10
		MCN-07	78	10
		MCN-08	11	10
		MCN-09	10	10
		MCN-10	254	10
		MCN-11	8.3	10
		MCN-12	400	10
		MCN-13	96	10
		MCN-14	26	10
	21-Dec-94	MCN-18	16.1	10
		MCN-19	7.8	10
		MCN-20	15.8	10
		MCN-21	14.6	10
		MCN-22	20.2	10
		MCN-27	11.7	10
		MCN-27-dup	16	10
Floor Wipe	21-Dec-94	MCN-15	1.0 U	10
(unrestriced Access)		MCN-16	1.9 J	10
		MCN-17	1.5	10
Wall Wipe	21-Dec-94	MCN-23	2	10
		MCN-24	0.6 J	10
		MCN-25	3	10
		MCN-26	1	10
Concrete Core	21-Dec-94	MCN-CC-01	390 E	10
		MCN-CC-02	0.84 U	10
		MCN-CC-03	0.86 U	10
		MCN-CC-04	0.83 U	10
		MCN-CC-05	0.81 U	10
Soil	21-Dec-94	MCN-SL-01A-B *	0.81 U	10

Notes:

E - Estimated quantity.

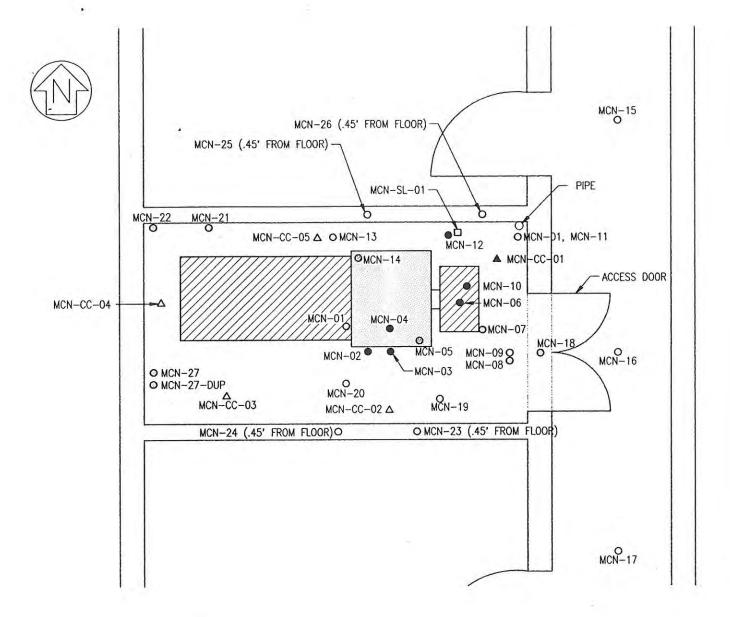
U - Undetected at quantitation limit.

J - Estimated value, result was less than detection limit.

Bold - PCB concentrations above the cleanup level.

* Soil sample was collected at 7" below ground surface.

PCB Remediation Confirmatory Sampling Results McCarty Hall North Transformer Vault University of Washington Table B2:


				Wipe Sample			Soil Sample	
Sample Type	Sample Date	Sample ID	Results Total PCBs (µg/100 cm²)	Further Remedial Actions	Cleanup Level (µg/100 cm²)	Results Total PCBs (mg/kg)	Further Remedial Actions	Cleanup Level (mg/kg)
Soil	21-Aug-96	MCN1 *				1.6	No	10
Floor Wipe	21-Aug-96	MCNWI	11	Encapsulation	100			
		MCNW2	160	Concrete Slab Removal	10			
	1	MCNW3	470	Concrete Slab Removal	10			
		MCNW4	7	Encapsulation	100			
		MCNW4D	11	Encapsulation	100			
	16-Sep-96	MCN101	2.3	No	10			
	I	MCN102	3.7	No	10			
		MCN102-DUP	4.7	No	10			
	ı	MCN103	1.0 U	No	10			
		MCN104	1.3	No	10			

Notes:

U - Undetected at quantitation limit.

Bold - PCB concentrations above the cleanup levels.

* Soil sample was collected at 7" below ground surface.

LEGEND

TRANSFORMER SWITCHCEAR O

SWITCHGEAR OR LOAD BREAK SWITCH

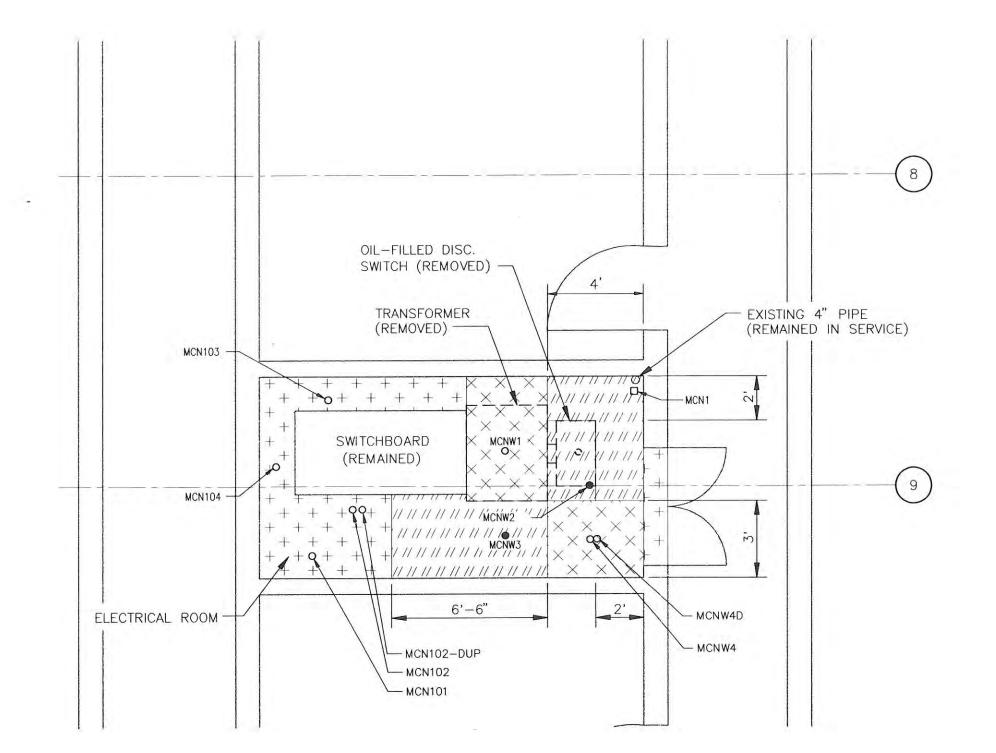
CONCRETE WIPE SAMPLE LOCATION

- TOTAL PCB's DETECTED AT GREATER THAN 100µg/cm²
- o TOTAL PCB's DETECTED BETWEEN 10µg/100cm² AND 100µg/100cm²
- o TOTAL PCB's DETECTED AT LESS THAN OR EQUAL TO 10µg/100cm² OR UNDETECTED

CONCRETE CORE SAMPLE LOCATION

- TOTAL PCB's DETECTED AT GREATER THAN 10mg/kg
- Δ TOTAL PCB'S DETECTED AT LESS THAN OR EQUAL TO 10mg/kg OR UNDETECTED

SOIL SAMPLE LOCATION AT 8" BELOW FLOOR SURFACE


- TOTAL PCB's DETECTED AT GREATER THAN 10mg/kg
- TOTAL PCB'S DETECTED AT LESS THAN OR EQUAL TO 10mg/kg OR UNDETECTED

0 2 4 8

SCALE IN FEET

1"=4'

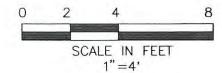
DAMES & MOORE

LEGEND

WASH/RINSE

SCABBLING WITH ENCAPSULATION

CONCRETE REMOVAL AND REPLACEMENT


CONCRETE WIPE SAMPLE LOCATION

- TOTAL PCBs DETECTED AT GREATER THAN 100µg/cm²
- o TOTAL PCBs DETECTED BETWEEN 10µg/100cm² AND 100µg/100cm²
- o TOTAL PCBs DETECTED AT LESS THAN OR EQUAL TO 10µg/100cm² OR UNDETECTED

SOIL SAMPLE LOCATION

- TOTAL PCBs DETECTED AT GREATER THAN 10mg/kg
- TOTAL PCBs DETECTED AT LESS THAN OR EQUAL TO 10mg/kg

APPENDIX C

MCCARTY HALL CENTRAL TRANSFORMER VAULT

DATA TABLES AND FIGURES

Table C1: PCB Site Characterization Sampling Results
McCarty Hall, Central Transformer Vault
University of Washington

			Wipe S	Sample	Co	ncrete Core and Soil Sam	ple
Sampling Date	Sample Type	Sample ID	Results Total PCBs (µg/100 cm²)	Cleanup Level (µg/100 cm²)	Depth (inch bgs)	Results Total PCBs (mg/kg)	Cleanup Level (mg/kg)
Switchgear Wipe	28-Nov-94	MCC-01	1,210	10			
		MCC-02	87	10			
Floor Wipe	28-Nov-94	MCC-03	102	10			
(Interior)		MCC-04	750	10			
		MCC-05	37	10			
		MCC-06	110	10			
14		MCC-07	320	10			
	- 1	MCC-08	42	10			
		MCC-09	1,210	10			
		MCC-10	416	10			
	1	MCC-11	1,620	10			
		MCC-12	5,700	10			
		MCC-13	410	10			
		MCC-14	114	10			
		MCC-15	29,000	10			1911
		MCC-16	2,200	10			10
		MCC-17	420,000	10			
	20 0.	MCC-18	340,000	10			
		MCC-19	109,000	10			
		MCC-20	3,200	10	P.		
		MCC-21	80,000	10			
	21-Dec-94	MCC-29	6	10		111	
HA.		MCC-30	17	10			
		MCC-31	12	10			
t		MCC-32	10	10			
		MCC-33	21	10			
		MCC-34	41	10			

Table C1: PCB Site Characterization Sampling Results
McCarty Hall, Central Transformer Vault
University of Washington

			Wipe S	Sample	Co	ncrete Core and Soil Sam	ple
Sampling Date	Sample Type	Sample ID	Results Total PCBs (µg/100 cm²)	Cleanup Level (μg/100 cm²)	Depth (inch bgs)	Results Total PCBs (mg/kg)	Cleanup Level (mg/kg)
Floor Wipe	21-Dec-94	MCC-23	3	10			, 0 0,
(Exterior)		MCC-24	1.3	10			
		MCC-25	2	10			
		MCC-26	11.1	10			
		MCC-27	3	10			
		MCC-28	1	10			
Wall Wipe	21-Dec-94	MCC-35	14	10			
		MCC-36	2	10			
		MCC-37	1	10			
		MCC-38	1	10			
Concrete Chip	28-Nov-94	CS-MCC-01				30	10
		CS-MCC-02				4,900	10
Concrete Core	21-Dec-94	MCC-CC-01		(1 = = 1)		27	10
		MCC-CC-01-dup				40	10
		MCC-CC-02				2	10
		MCC-CC-03				0	10
		MCC-CC-04	•			1	10
		MCC-CC-05				9	10
		MCC-CC-06				250	10
		MCC-CC-07				1	10

Table C1: PCB Site Characterization Sampling Results
McCarty Hall, Central Transformer Vault
University of Washington

			Wipe S	Sample	Co	ncrete Core and Soil Sam	ple
Sampling Date	Sample Type	Sample ID	Results Total PCBs (μg/100 cm²)	Cleanup Level (µg/100 cm²)	Depth (inch bgs)	Results Total PCBs (mg/kg)	Cleanup Level (mg/kg)
Soil	21-Dec-94	MCC-SL-01A-B			6"	260	10
	7. C 11. 34	MCC-SL-01A-B-dup			6"	73	10
		MCC-SL-01B			20"	650	10
	25-Mar-95	MCC-SL-02A			5"	0.033 U	10
		MCC-SL-02B			29"	0.033 U	10
		MCC-SL-03A			5"	0.027 J	10
		MCC-SL-03B			24"	0.66	10
		MCC-SL-04A			5"	2.8	10
		MCC-SL-04B			9"	0.93	10
		MCC-SL-05A			5"	0.033 U	10
		MCC-SL-05B			29"	0.11	10

Notes:

- E Estimated quantity.
- U Undetected at quantitation limit.
- J Estimated value, result was less than detection limit.

Bold - PCB concentrations above the cleanup levels.

0.0022

VOC Site Characterization Sampling Results McCarty Hall, Central Transformer Vault University of Washington Table C2:

Unit for floor wipe samples: ug/100 cm²

# 113.00 Particularies	.0004 0.0003 0.0016	0.023 0.017 0.0012 U
eifiroffile eneighfiel E	0.0005 0.00	0.00005 U 0.0
Sample ID	MCC-VOC-01	MCC-VOC-02
Sample Date	28-Nov-94	
Sampling Type	Floor Wipe	

Sampling Type	Sample Date	Sample ID	ennewnerflooredfliefind (1, id. fl	ransonalizated 3,4,0	PSYNDAGAN	exmelliteconcolitieshada N _e N _e N	Sussausgorchishia (4)	suszausgrotolykja jäl	रामञ्जनस्यान्यकारम् । श्रृत	សមនុស្សស្រួសស្រួក (គ្នាក្រៀ	sancil ficacció ficials	Succept	enorgi den concenti i conceliti estrat
	MTCA Method B Soil Cleanup Level	il Cleanup Level	800	NA	34.5	72,000	7,200	41.7	NA	NA	6'06	16.000	24 000
Concrete Chip	28-Nov-94	CS-MCC-03	12	3.5	0.005	0.0019	0.012	0.009	0.0023	0.0012	0.001 U	0.001 U	0.002 U
		CS-MCC-04	30 J	=	0.0016	0.001 U	0.12U	0.12U	0.12U	0 000	0.0013	0.0016	0.000

NA - Cleanup standard is not available.

Bold - PCB concentrations above the cleanup levels.

Table C3: PCB Remediation Confirmatory Sampling Results
McCarty Hall, Central Vault Room
University of Washington

				Wipe Sample	Conc	Concrete Core and Soil Sample	Sample	
Sampling Type	Sample Date	Sample ID	Results Total PCBs (µg/100 cm²)	Cleanup Level (µg/100 cm²)	Depth (inch bgs)	Results Total PCBs (mg/kg)	Cleanup Level (mg/kg)	Further Remedial Actions
Soil	7-Aug-96	MCC1			4"	9:9	10	No
(Interior Vault)		MCC2			*8	18	10	Additional Soil Removal to 20" bgs (MCC-10 & -11)
		MCC3			8	45	10	Additional Soil Removal to 20" bgs (MCC-10 & -11)
-1		MCC4			8	4.1	10	cN
	14-Aug-96	MCC5			8	1.5	10	No
		WCC6			*8	47	10	Additional Soil Removal to 20" bgs (MCC-10 & -11)
	,	MCC7			24"	13	10	Additional Soil Removal to 26" bgs (MCC-12 & -13)
		MCC8			24"	17	10	Additional Soil Removal to 26" bgs (MCC-12 & -13)
		MCC9			20"	0.95	10	No
	15-Aug-96	MCC10			20"	0.11	10	No
		MCC11			20"	U160.0	10	No
	19-Aug-96	MCC12			26"	1.2	10	No
- 1		MCC13			26"	48	10	Additional Soil Removal to 34" bgs (MCC-14)
	21-Aug-96	MCC14			34"	190	10	Additional Soil Removal to 39" bgs (MCC-15)
	23-Aug-96	MCC14D			36"	15	10	Additional Soil Removal to 39" bgs (MCC-15)
		MCC14D1			36"	49	10	Additional Soil Removal to 39" bgs (MCC-15)
	29-Aug-96	MCC15			39"	1.7	10	ČN.

PCB Remediation Confirmatory Sampling Results McCarty Hall, Central Vault Room University of Washington Table C3:

			Wipe	Wipe Sample	Conc	Concrete Core and Soil Sample	Sample	
Sampling Type	Sample Date	Sample ID	Results Total PCBs (µg/100 cm²)	Cleanup Level (µg/100 cm²)	Depth (inch bgs)	Results Total PCBs (mg/kg)	Cleanup Level (mg/kg)	Further Remedial Actions
Floor Wipe	19-Aug-96	MCCWI	9.0	10		5	ò	N
(Interior Vault)		MCCW2	1.4	10				ON ON
		MCCW3	2.3	10				oN.
Wall Wipe	28-Aug-96	MCCW4	4	10				ON ON
(Interior Vault)		MCCW5	5.4	10				ON ON
Switchgear Wipe	7-Sep-96	MCCW101	2.9	10				Additional Wash and Rinse
		MCCW102	12	10				Additional Wash and Rinse
	25-Sep-96	MCC201	3.3	10				No
		MCC202	1.5	10				No

Notes:

U - Undetected at quantitiation limit.

Bold - PCB concentrations above the cleanup levels.

Table C4: PCB Remediation Confirmatory Sampling Results
McCarty Hall, Central Vault Hallway
University of Washington

			Wipe Sample	ample	Con	Concrete and Soil Sample	ple	
Sampling Type	Sample Date	Sample ID	Results Total PCBs (μg/100 cm²)	Cleanup Level (µg/100 cm²)	Depth (inch bgs)	Results Total PCBs (ppm)	Cleanup Level (ppm)	Further Remedial Actions
Floor Wipe	28-Aug-96	MCCW6	01	10				Additional Washing and Rinsing
	7	MCCW7	32	10				Additional Washing and Rinsing
		MCCW8	14	10				Additional Washing and Rinsing
		MCCW9	3.8	10				Additional Washing and Rinsing
	23-Sep-96	MCC101	15	10				Additional Washing and Rinsing
		MCC102	12	10				Additional Washing and Rinsing
		MCC103	22	10				Additional Washing and Rinsing
		MCC104	26	10				Additional Washing and Rinsing
	26-Sep-96	MCC301	23	100				Encapsulation
		MCC302	9.6	100				Encapsulation
		MCC303	15	100				Encapsulation
		MCC304	43	100		1		Encapsulation
	8-Oct-96	MCC101A	7.5	100				Encapsulation
		MCC102B	NA	NA				°N
		MCC103C	NA	NA				o _N
		MCC104A	23	100				Encapsulation
		MCC105B	6.9	100				Encapsulation
		MCC106C	NA	NA				No
		MCC107B	15	100				Encapsulation
		MCC108C	5.7	100				Encapsulation
		MCC109D	NA	NA				Encapsulation
		MCC109D-DUP	NA	NA	x			Encapsulation
	25-Oct-96	MCC-401	430	10				Scabbling of 1 Foot Radius
		MCC-402-A	5.7	100				Encapsulation


Table C4: PCB Remediation Confirmatory Sampling Results
McCarty Hall, Central Vault Hallway
University of Washington

			Wipe	Wipe Sample	Con	Concrete and Soil Sample	ple	
Sampling Type	Sample Date	Sample ID	Results Total PCBs (µg/100 cm²)	Cleanup Level (µg/100 cm²)	Depth (inch bgs)	Results Total PCBs (ppm)	Cleanup Level (ppm)	Further Remedial Actions
1,	96-voN-5	MCC 501	6.5	100				Encapsulation
		MCC502	1.9	10				°N.
		MCCS03	11	100				Encapsulation
		MCC504	4.4	10				ON
	96-09C	MCC-601	066	10				Concrete Slab Removal & Replacement
	4-Mar-97	MCC-701	2.0U	10	,			oN.
		MCC-702	2.0U	10				No
Concrete Chip	13-Dec-96	MCCC-01			Surface	7,200	10	Concrete Slab Removal & Replacement
		MCCC-02			Surface	9.9	10	Concrete Slab Removal & Replacement
Soil	21-Jan-97	MCCSA1			4"	0.021	10	. oN
		MCCSA1			4"	0.34	10	No

Note:

NA - Sample was not analyzed.

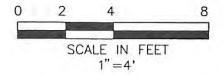
Bold - PCB concentrations above the cleanup levels.

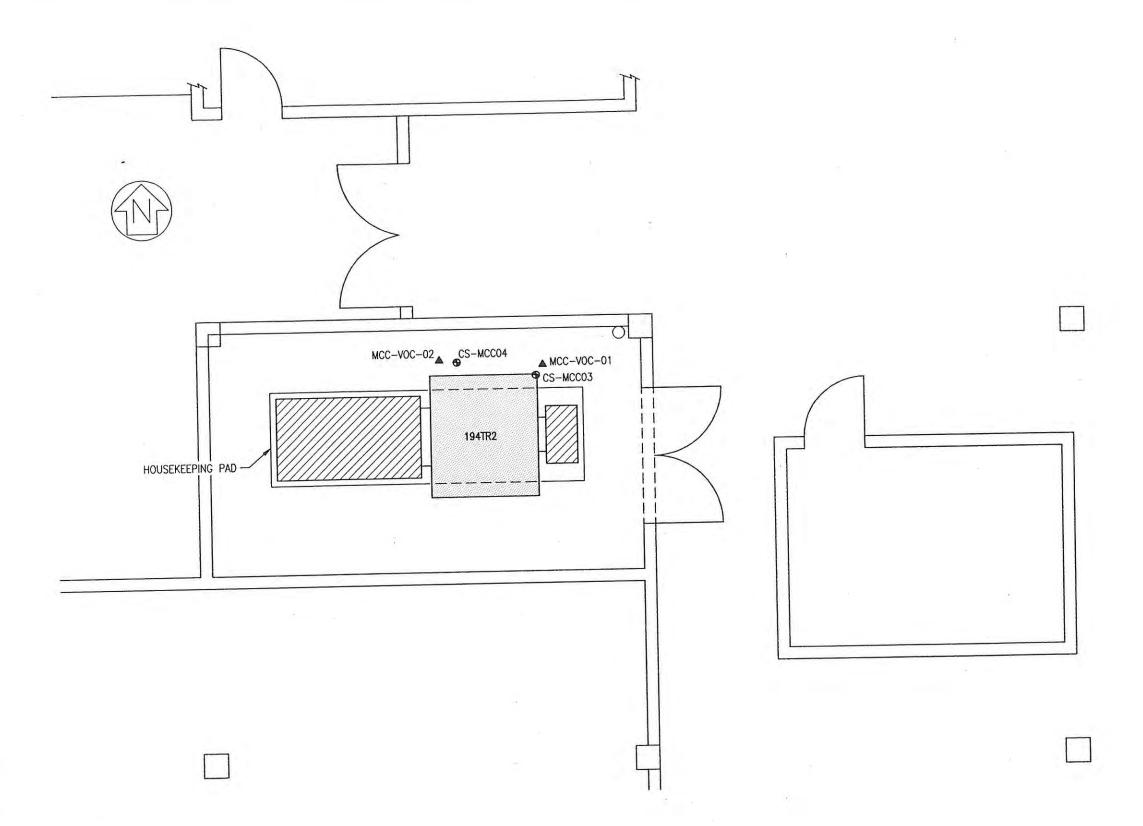
LEGEND

TRANSFORMER

SWITCHGEAR OR LOAD BREAK SWITCH

CONCRETE WIPE SAMPLE LOCATION

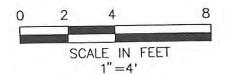

- TOTAL PCB's DETECTED AT GREATER THAN 100µg/cm²
- o TOTAL PCB s DETECTED BETWEEN 10μg/100cm² AND 100μg/100cm²
- o TOTAL PCB's DETECTED AT LESS THAN OR EQUAL TO 10µg/100cm² OR UNDETECTED


CONCRETE CHIP AND CORE SAMPLE LOCATION

- TOTAL PCB's DETECTED AT GREATER THAN 10mg/kg
- TOTAL PCB's DETECTED AT LESS THAN OR EQUAL TO 10mg/kg OR UNDETECTED
- CONCRETE CHIP SAMPLE OF GROUT (TOTAL PCS's DETECTED AT GREATER THAN 10mg/kg)

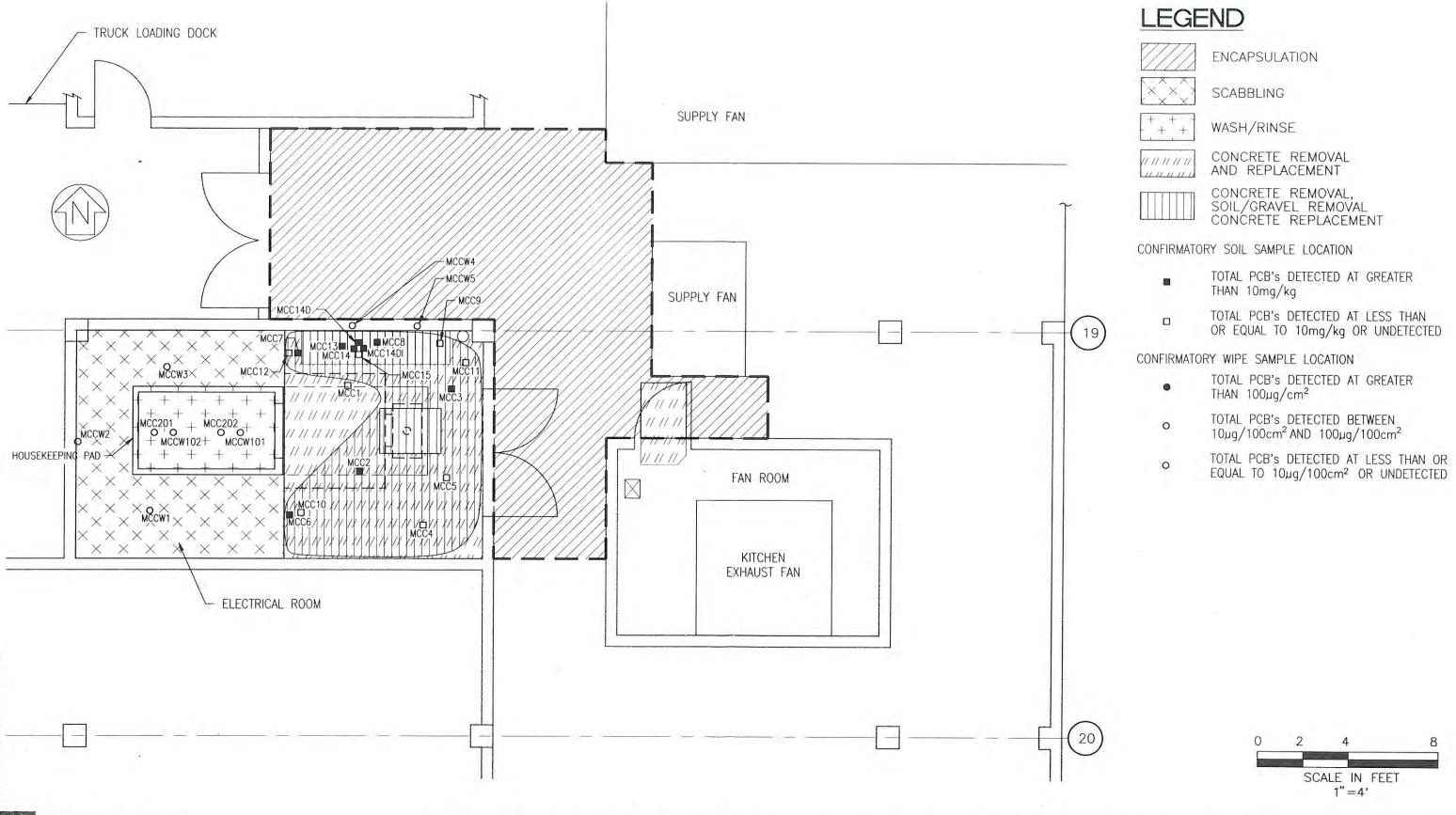
SOIL SAMPLE LOCATION

- TOTAL PCB's DETECTED AT GREATER THAN 10mg/kg
- TOTAL PCB's DETECTED AT LESS THAN OR EQUAL TO 10mg/kg OR UNDETECTED

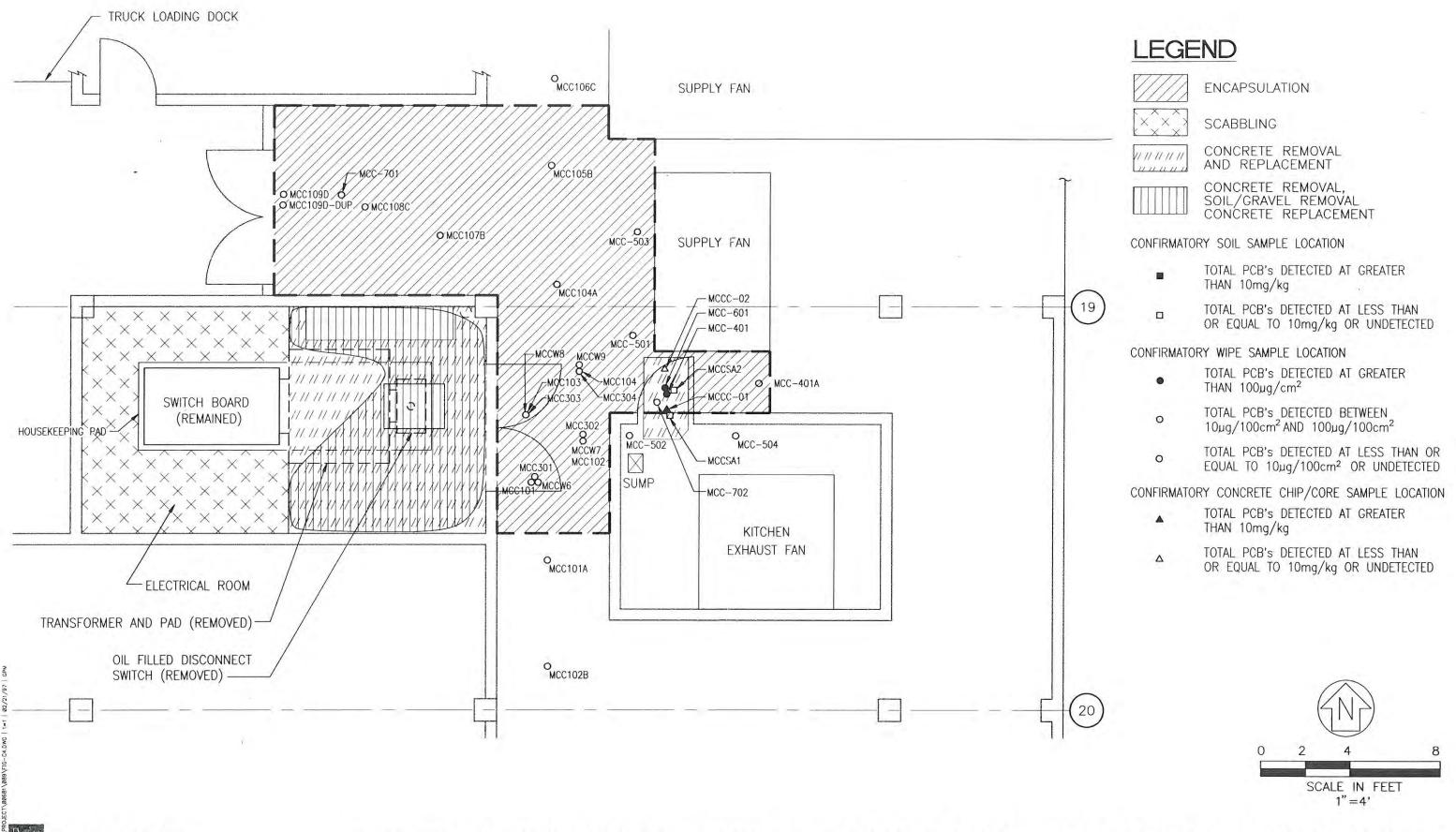

LEGEND

TRANSFORMER SWITCHGEAR C

SWITCHGEAR OR LOAD BREAK SWITCH


▲ VOC WIPE SAMPLE LOCATION

VOC CONCRETE CHIP SAMPLE LOCATION


DAMES & MOORE
ADAMES & MOORE GROUP COMPANY

VOC SITTE CHARACTERIZATION SAMPLE LOCATIONS - McCARTY HALL, CENTRAL ROOM

DAMES & MOORE
ADAMES & MOORE GROUP COMPANY

PCB REMEDIAL ACTIONS AND CONFIRMATORY SAMPLE LOCATIONS - MCCARTY HALL, CENTRAL VAULT ROOM

DAMES & MOORE

PCB REMEDIAL ACTIONS AND CONFIRMATORY SAMPLE LOCATIONS - MCCARTY HALL, CENTRAL ROOM HALLWAY AREAS

APPENDIX D	
UNIVERSITY OF WASHINGTON LETTER TO DEPARTMENT OF ECO	LOGY (3/23/95)

UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON 98195-4400

Environmental Health & Safety 201 Hall Health Center Box 354400

March 23, 1995

Department of Ecology Northwest Regional Office 3190 160th Southeast Bellevue, Washington 98008

Attention:

Mr. Peter Maule

Toxics Cleanup Program

Mr. Norman Peck

Toxics Cleanup Program

Dear Messieurs Maule and Peck:

We appreciate meeting with you on March 14, 1995 to discuss the University of Washington's PCB transformer vault remediation projects conducted to date, and the proposed approach for a future transformer conversion project. This letter summarizes the issues we discussed and represents our understanding of the results of the meeting.

The University is intending to replace three transformers in McCarty Hall at the University of Washington Campus in Seattle, Washington. As part of this process, a focused PCB survey was conducted to assess the potential presence of PCBs. In accordance with WAC 173-340-300, this letter formally notifies Department of Ecology that the University has discovered a limited PCB release to soils (gravels) beneath the central transformer vault concrete floor (room G-046). One pea gravel sample and one field duplicate sample were collected from construction fill material beneath the vault room floor near a groundwire. The PCB concentrations of the gravel samples are 260 mg/kg (MCC-SC-01A-B) and 70 mg/kg (MCC-SC-01A-B Duplicate). The Environmental Protection Agency has also been notified of this contamination. The University intends to further characterize the lateral and vertical extent of PCB-affected gravels beneath the vault floor. The University has retained Dames & Moore for technical and engineering consulting services during the PCB characterization and remediation. We intend to conduct the additional characterization

Letter to Maule/Peck March 23, 1995 Page 2

within the next 60 days.

At this time, the PCB contaminated soil does not represent a risk to human health and the environment because it is most likely (1) limited to fill materials beneath the vault floor near one groundwire, (2) the groundwire will be sealed to restrict future migration of materials, and (3) the concrete floor will serve to minimize future transport. In addition, the transformer vault is restricted from public access and locked except during maintenance and inspection activities.

Following the soils characterization, the University intends to implement an independent remedial action in accordance with WAC 173-340-510. To avoid the difficulty of dealing with two agencies, the Department of Ecology has agreed to allow the Environmental Protection Agency take the lead role in overseeing the remediation of this site. The cleanup level agreed to by the Environmental Protection Agency for the contaminated soils is 10 parts per million. We will supply you with a closure report when that report is completed.

Sincerely,

Seth Mullen, R.S.

Sanitarian

Environmental Health and Safety

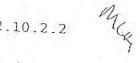
Robin Shoemaker, P.E.

Projects Director for Infrastructure,

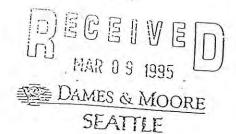
Capital Projects

SM/RS/bm

CC:


Kimball Jones Wendy Phippen Barb McPhee

Don Renbarger


APPENDIX E

UNIVERSITY OF WASHINGTON LETTER TO

ENVIRONMENTAL PROTECTION AGENCY (3/6/95)

UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON 98195-4400

Environmental Health & Safety 201 Hall Health Center Box 354400

March 6, 1995

Mr. Bill Hedgebeth **Environmental Protection Agency** Region 10 1200 Sixth Avenue, AT-083 Seattle, WA 98101

McCarty Vault Remediation - Project No. 1873 Re:

Meeting with University of Washington Representatives

February 16, 1995

Dear Mr. Hedgebeth:

We appreciate meeting with you on February 16, 1995 to discuss the University of Washington's PCB transformer vault remediation projects conducted to date, and the proposed approach for a future transformer conversion project. This letter summarizes the issues we discussed and represents our understanding of the results of the meeting.

The University has begun a program to replace (over the next several years) its current retrofilled transformers with dry-type transformers. As part of the overall program, focused PCB surveys were conducted in targeted transformer vaults to evaluate PCB concentrations resulting from historical (prior to 1987), non-catastrophic leaks, and to determine if remediation is necessary as part of the transformer replacement project. All transformer vaults at the University are restricted from public access and locked except during maintenance and inspection activities. These initial surveys indicate some transformer vaults to be completely free of PCB contamination, while others have been discovered to have varying degrees of contamination. Characterization surveys, which included wipe samples of concrete surfaces, cinder block walls, door curbing surfaces and bulk samples of concrete surfaces, concrete grout, concrete floors, and (in one location) underlying soils (pea gravel), indicated PCBs are present in select vault locations.

The primary focus of our meeting was to present proposed cleanup levels for the transformer vaults based on the cleanup requirements established in 40 CFR, Part 761, Subpart G, and our proposed site-specific remediation alternatives. The University intends to remove material that contains PCBs above the site-specific regulatory levels (established with EPA Region 10). The proposed site-specific cleanup levels and associated rationale for further selection are summarized in Table 1; site-specific

Letter to Mr. Bill Hedgebeth March 6, 1995 Page 2

remediation alternatives are provided in Table 2. It is our understanding that EPA Region 10 concurs with the site-specific cleanup levels provided in Table 1 and remediation alternatives provided in Table 2. Based on EPA Region 10's concurrence, the University intends to universally apply these cleanup standards and remediation alternatives for the duration of the transformer conversion project.

Based on previous PCB remediation of transformer vaults, a potential exists for encountering difficulties in meeting cleanup levels for concrete floors and underlying materials. Maintaining building structural integrity may conflict with full pursuit of floor or substrate cleanup levels. If difficulties are encountered during remediation, the University will contact EPA Region 10, provide the technical rationale, and obtain concurrence prior to implementing innovative, remediation alternatives, or variances to the established site-specific cleanup levels (other than those presented in Table 2).

The University proposes to provide EPA Region 10 with closure reports upon completion of PCB remediation of each transformer vault:

We appreciate your support and regulatory guidance towards completing successful PCB remediation projects as a component of our planned transformer replacement program. Please contact us if you have further questions or require clarification.

Sincerely,

Kimball Jones

Environmental Health Officer, Environmental Health and Safety

for KIM TONES

Robin Shoemaker, P.E.

Projects Director for Infrastructure,

Capital Projects

KJ/RS/bm

Attachments:

Tables 1 and 2

CC:

Don Renbarger, University of Washington Seth Mullen, University of Washington Larry Nelson, University of Washington

Melody Allen, Dames & Moore Julie Harvey, Dames & Moore Attachment 1 March 6, 1995

		Rationale	Selected based on negotiated cleanup levels for Terry 1 and 2	Vault (EPA and the Hairmer	40 CFR 761.125(c)(3)(iii)		3		40 CFR 761.125(c)(3)(ii)	40 CFR 761 12 \$(\$\fanta\tan\tan\tan\tan\tan\tan\tan\tan\tan	cleanup levels for soil is	access areas	40 CFR 761.125(c)(4)(ii)
TABLE 1	Proposed PCB	Cleanup Level	(with encapsulation)		10 ug/100 cm² (if cleanup level of 10	ug/100 cm² cannot	be achieved, may	10 119/100 cm2	1110 000 00	10 тg/kg			.10 ug/100 cm ²
TA PCB CLEA	PCB Concentrations	>100 ug/100 cm2	,	> 10 119/100 cm2 km	< 100 ug/100 cm ²			> 10 ug/100 cm ²		> 10 mg/kg		> 10 0.1100 2	
	Media	Concrete	Surfaces	Concrete	Surfaces	contact)		nt	Soil			Concrete	
	VCC35	Restricted access							•			Unrestricted Access	

iid.

TABLE 2 REMEDIATION ALTERNATIVES

	REMEDIATION ALTERNATIVES
Remodial Alternatives	Canonaic
PCB Source Removal	Existing oil-filled transformers will be replaced with "dry" transformers; therefore, the PCB source(s) will be removed.
Solvent/Detergent Washing	Proposed where limited surface areas contain PCBs above 10 ug/100 cm ² or localized individual "hot spots" are present above 100 ug/100 cm ² .
Concrete Scabbling	Proposed where surfaces contain PCB concentrations greater than 100 ug/100 cm and where concrete chip or care samples contain PCBs > 10 mg/kg.
Encapsulation	Proposed for surfaces where remediation techniques cannot achieve site-specific cleanup levels. Encapsulation will provide a protective coating to eliminate exposure to workers.
Concrete Removal	Proposed where PCBs are present in expansion joints and associated transformer pad. This technique may be more cost effective than other techniques where structurally feasible.
Soil Removal	Proposed where limited volumes of contaminated material are present and structural integrity is not a concern.
Soil fixation and removal of transport mechanism	Proposed where underlying soils cannot be removed due to structural concerns. Institutional controls will be implemented.
Institutional Controls	Proposed where cleanup levels cannot be achieved. Institutional controls would include: Continued restricted access; Inspection, operation, and maintenance procedures for encapsulated areas; Notations on building specifications; and Deed Restrictions.

APPENDIX F

CHAIN OF CUSTODIES, LETTERS OF QUALITY CONTROL AND ASSURANCE, AND LABORATORY RESULTS

Memo

500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 206 728 0744 Telephone 206 727 3364 Fax

To: Steve Hitch, Project Manager

Info:

From:

Brian Custer, Staff Chemist &

Date:

June 18, 1997

RE:

McCarty Hall Surface Wipe, Soil and Concrete PCB Data

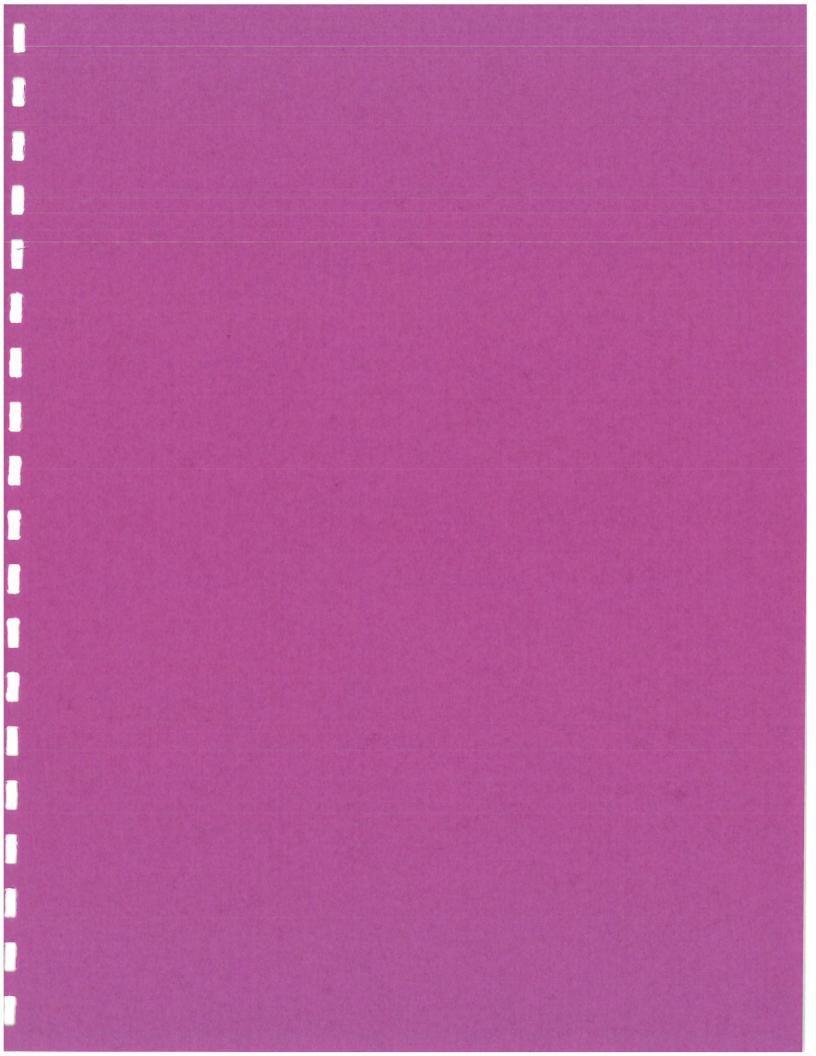
Twenty-four (24) analytical reports from Sound Analytical Services, Inc.(SAS) and Analytical Resources, Inc. (ARI) have been reviewed in accordance with Dames & Moore's Quality Assurance Program. The reports include surface, soil and concrete polychlorinated biphenyl (PCB) analytical results and associated quality control. The quality control results were compared to the laboratory-established statistical control limits which were applicable during the time which the analyses were conducted. In addition to laboratory quality control, two duplicate sample pairs and three field blanks were collected and analyzed by the laboratories as project samples. The relative percent difference between duplicate pairs was calculated and is reported below. Analytical results for field blanks and method blanks were reviewed to ensure that target analytes had not been detected. Sample handling and storage time before extraction were also reviewed using information from chain-of-custodies and the analytical reports. The following specific reports were reviewed:

Report Date	Laboratory	Report Number	Review Status
August 9, 1996	SAS	58582	Acceptable
August 16, 1996	SAS	58734	Acceptable
August 19, 1996	SAS	58791	Acceptable
August 20, 1996	SAS	58828	Acceptable
August 21, 1996	SAS	58840	Acceptable
August 22, 1996	SAS	58881	Acceptable
August 23, 1996	SAS	58894	Acceptable
August 26, 1996	SAS	58962	Acceptable
August 29, 1996	SAS	59074	Acceptable
September 3, 1996	ARI	P957	Acceptable
September 13, 1996	ARI	Q054	Acceptable
September 24, 1996	ARI	Q151	Acceptable
September 25, 1996	SAS	59684	Acceptable
September 26, 1996	SAS	59762	Acceptable
September 30, 1996	SAS	59790	Acceptable
October 15, 1996	ARI	Q408, parts I-III	Acceptable
October 29, 1996	ARI	Q617	Acceptable
October 31, 1996	ARI	Q617II	Acceptable
November 8, 1996	ARI	Q699	Acceptable

Report Date	Laboratory	Report Number	Review Status
December 11, 1996	ARI	R021	Acceptable
December 17 and 18, 1996	ARI	R118 Parts I and II	Acceptable
January 23, 1997	ARI	R447	Acceptable
March 11, 1997	ARI	R821	Acceptable

Conclusions

Quality control (QC) reported by both laboratories included surrogate spike recovery (method required), method blank analysis and blank spike or laboratory control sample analysis. SAS also reported blank spike duplicate analyses and RPD while ARI did not. SAS also reported analysis results of MS/MSD samples and used project soil samples for these analyses. Neither laboratory reported MS/MSD analyses of wipe samples. A complete assessment of analytical precision of the ARI data reviewed was not possible since duplicate blank spikes were not analyzed nor were other data such as sample replicate analysis or instrument calibration presented by this laboratory. The relative analytical bias of sample results was evaluated based on the results of BS/BSD analyses, the limited MS/MSD analytical results presented by SAS, surrogate recovery (which was not possible for diluted samples reported by SAS and several diluted sample results reported by ARI).


In most cases surrogate recovery reported by both laboratories was within both laboratories' statistical control limits except for samples in which the surrogates were reported to have been diluted out as discussed previously. SAS did not include the original un-diluted sample results in their reports and instead reported only the diluted sample results that were within the instrument's range. ARI, on the other hand, reported all sample results including re-analysis of diluted samples which allowed evaluation of surrogate recovery in the un-diluted sample. Target analytes were not reported in method blanks analyzed with samples included in any of the SAS or ARI reports reviewed. Based on the information presented, laboratory QC for estimating analytical bias presented by both laboratories was within statistical control established by both laboratories. Project sample results reported by both laboratories were therefore not qualified based on the QC reviewed.

Analytical precision was evaluated from results of BS/BSD RPDs (SAS Data only) and the RPDs reported for the two MS/MSD analyses of soil and surface wipes (presented by SAS only). Other information such as calibration data, historical MS/MSD analyses, or replicate analyses were not requested by Dames & Moore and hence, not reviewed during this assessment. The evaluation of SAS QC data indicates that the control limit established by the laboratory for BS/BSD RPDs was not exceeded. The RPD control limit for the soil MS/MSD analysis was exceeded which indicates that the analysis of this sample was not in control. Due to the limited MS/MSD data presented, a determination that the lab could not precisely determine the amount of PCB target analytes in the project soil matrix could not be made. The soil project data reported by SAS were therefore not qualified. Sufficient QC information was not provided by ARI to confidently assess analytical precision of project data presented in their reports.

Quality control samples collected by Dames & Moore during sample collection activities and analyzed by both labs included several field surface wipe blanks, consisting of un-used wipes in hexane and enclosed in the same type of sample container as project samples, and two pairs of sample duplicates, one pair of which was collected from soil and one pair collected from surfaces with wipes. Due to the lack of sufficient

numbers of sample duplicate pairs from each matrix sampled during the project, an estimate of the standard deviation for each duplicate pair using common estimating formulas was not calculated and consequently, calculation of confidence intervals for project data specific to each matrix (e.g. soil, surface dust, concrete) was also not possible. The calculated RPD for the soil sample duplicate pair was 38% and for the wipe sample duplicate pair the calculated RPD was 1.2%. Control limits for RPDs of these types of duplicates were not provided by project plans or a QAPP and therefore are presented for informational purposes only. Target analytes were not reported in any of the surface wipe blanks analyzed by the laboratories. Due to the limited field QC information available, a complete assessment of the precision of project data could not be made. Project sample data were not qualified based on these results.

The reported storage time prior to extraction of all samples and matrices represented did not exceed holding time limits recommended by the USEPA.

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

TRANSMITTAL MEMORANDUM

DATE: August 9, 1996

TO: Steve Hitch

Dames & Moore

PROJECT: 00681-089-163 U W McCarty

REPORT NUMBER: 58582

Enclosed are the test results for four sample received at Sound Analytical Services on August 8, 1996.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (206) 922-2310.

Sincerely,

Darla J/ Powell Project Manager

DJP:tm

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY, Project Manager

Total Number Of Containers Laboratory Note Number		2)																T_OF_		7/9/
FIELD NOTES:	58582 - 1	, C	3	t						,								SHEET) NOITOTI
															A54P			179))
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		***	×	×											() *			1	(ARTY	1440
															RESULT RESULT			1	The	14 K7 K
4000														I ABORATORY NOTES:	U			. 0	$^{\prime}$	
050 107 1010 C										-				_	· ch	(a.		JOB NO.:	PROJECT	LOCATION
10 20 20 20 20 20 20 20 20 20 20 20 20 20					4									RECEIVED BY: (Signature)	MOUNT () A CONTROLLED BY (S) SIGNATURE)	RECEIVED BY: (Signature)	/5	DACY DCC	0	
Container Type	200	1			242			•					-	RECEIVE	- Mall	RECEIVE	Aughtica	2200	iii 💮	500 Market Place Tower 2025 First Avenue
Sample Type C					2/2/2		1 3	e de		21				DATE/TIME	S/8/96 DATE/TIME	DATE/TIME	2707		HJC1 H	LO AIVIES & IVIO ONE 500 Market Place Tower 2025 First Avenue
Time	1	1515	1525	1535	1									lre)	ure)	ure)	1	1	\ I .	
Depth	"4"		10	- X	W.									(Signature)	(Signatu	(Signat	Vacted	TACT	710	
Sample Number	MCC 1-	700H	Hec 3	Mcc 4										HED BY.	HED/BY:	SHED BY:	Cavi	DRY CON	TACT:	li,
Boring or Well Number						1					4.			RELINDLIISHED BY:	RELINQUISHED/BY: (Signature)	RELINQUISHED BY: (Signature)	-Vactagoda Isoltvishis	LABORATORY CONTACT:	*D&M CONTACT:	ign e

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:

% Solids

Dames & Moore MCC1 58582-01 8/8/96 8/8/96 8/8/96 97.75

PCBs by USEPA Method 8080

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	101		50	150
Decachlorobiphenyl	133		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	0.5	
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	.ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	6.6	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

 Client Name
 Dames & Moore

 Client ID:
 MCC2

 Lab ID:
 58582-02

 Date Received:
 8/8/96

 Date Prepared:
 8/8/96

 Date Analyzed:
 8/8/96

 % Solids
 97.13

PCBs by USEPA Method 8080

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	108		50	150
Decachlorobiphenyl	117		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	0.98	
Aroclor 1221	ND	0.98	
Aroclor 1232	ND	0.98	
Aroclor 1242	ND	0.98	7-
Aroclor 1248	ND	0.98	
Aroclor 1254	ND	0.98	
Aroclor 1260	18	0.98	
Aroclor 1262	ND	0.98	
Aroclor 1268	ND	0.98	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:

% Solids

Dames & Moore MCC3 58582-03 8/8/96 8/8/96 8/8/96 99.11

PCBs by USEPA Method 8080

2 3 3 3 3 3			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	•	X8	50	150
Decachlorobiphenyl		X8	50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	4.7	· lugo
Aroclor 1221	ND	4.7	
Aroclor 1232	ND	4.7	
Aroclor 1242	ND	4.7	
Aroclor 1248	ND	4.7	
Aroclor 1254	ND	4.7	
Aroclor 1260	45	4.7	
Aroclor 1262	ND	4.7	
Aroclor 1268	ND	4.7	

 Client Name
 Dames & Moore

 Client ID:
 MCC4

 Lab ID:
 58582-04

 Date Received:
 8/8/96

 Date Prepared:
 8/8/96

 Date Analyzed:
 8/8/96

 % Solids
 97.76

PCBs by USEPA Method 8080

	0		Recovery Limits			
Surrogate	% Recovery	Flags	Low	High		
TCMX	94		50	150		
Decachlorobiphenyl	109		50	150		

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	0.097	3-
Aroclor 1221	ND	0.097	
Aroclor 1232	ND	0.097	
Aroclor 1242	ND	0.097	
Aroclor 1248	ND	0.097	
Aroclor 1254	ND	0.097	
Aroclor 1260	4.1	0.097	
Aroclor 1262	ND	0.097	
Aroclor 1268	ND	0.097	

Lab ID:

Date Received: Date Prepared:

Date Analyzed: % Solids Method Blank - PCB694

8/8/96 8/8/96 100

PCBs by USEPA Method 8080

0			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	103		50	150
Decachlorobiphenyl	112		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	0.099	riags
Aroclor 1221	ND	0.099	
Aroclor 1232	ND	0.099	
Aroclor 1242	ND	0.099	
Aroclor 1248	ND	0.099	
Aroclor 1254	ND	0.099	
Aroclor 1260	ND	0.099	
Aroclor 1262	ND	0.099	
Aroclor 1268	ND	0.099	

Blank Spike/Blank Spike Duplicate Report

Lab ID:

Date Prepared: Date Analyzed: QC Batch ID: PCB694

8/8/96

8/8/96

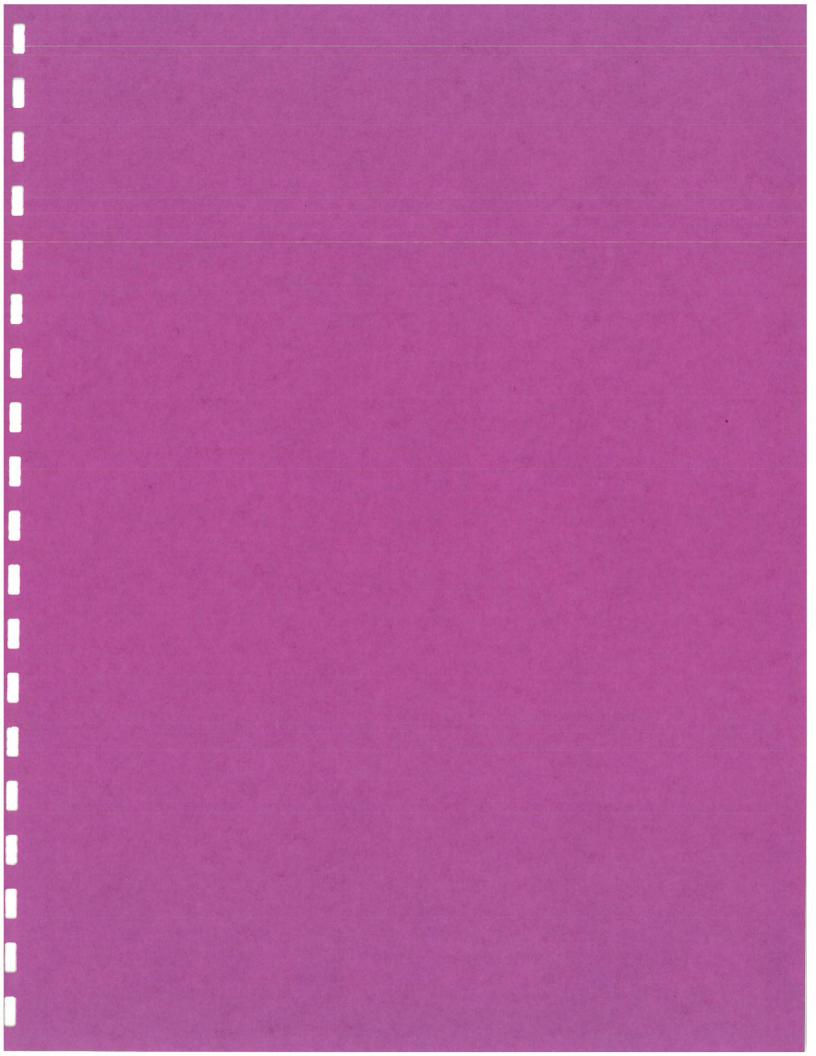
PCB694

PCBs by USEPA Method 8080

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Aroclor 1260	0	0.995	0.975	98	0.93	99	1	

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 • TELEPHONE 206-922-2310 • FAX 206-922-5047

DATA QUALIFIERS AND ABBREVIATIONS


This analyte was detected in the associated method blank. The analyte concentration was determined not to be B1: significantly higher than the associated method blank (less than ten times the concentration reported in the blank). This analyte was detected in the associated method blank. The analyte concentration in the sample was determined B2: to be significantly higher than the method blank (greater than ten times the concentration reported in the blank). C: Additional confirmation performed. The reported result for this analyte is calculated based on a secondary dilution factor. D: E: The concentration of this analyte exceeded the instrument calibration range. The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity. J: MCL: Maximum Contaminant Level MDL: Method Detection Limit N: See analytical narrative. ND: Not Detected PQL: Practical Quantitation Limit X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be Contaminant does not appear to be "typical" product. Further testing is suggested for identification. X2: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is X3: recommended. X4: RPD for duplicates outside advisory QC limits. Sample was re-analyzed with similar results. RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation X4a: limit/detection limit. X5: Matrix spike was diluted out during analysis. X6: Recovery of matrix spike was outside advisory QC limits. Sample was re-analyzed with similar results. X7: Recovery of matrix spike outside advisory QC limits. Matrix interference is indicated by blank spike recovery data. Recovery and/or RPD values for MS/MSD outside advisory QC limits due to high contaminant levels. X7a:

X8:

X9:

Surrogate was diluted out during analysis.

Surrogate recovery outside advisory QC limits due to matrix composition.

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

TRANSMITTAL MEMORANDUM

TO: Lee Hatcher

DATE: August 16, 1996

Dames & Moore

PROJECT:

00681-089-163

REPORT NUMBER: 58734

Enclosed are the test results for five samples received at Sound Analytical Services on August 14, 1996.

The report consists of this transmittal memo, analytical results, quality control reports, a copy chain-of-custody, a list of data qualifiers when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (206) 922-2310.

Sincerely,

Project Manager

DJP:tm

DAMES & MOORE

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

Chain of Custody

6577

Number of Containers Sample Receipt Total no. of containers: Chain of custody seals: Rec'd good condition/cold; Conforms to record: Instructions Comments/ Lab number: 9 (Date) 8/6 (8) **EP TOX Metals** Metals (13) Priority Pollutant **Analysis Request** 7 Received by (lab) 12 (Company) (Printed) (Sig) Pesticides/PCBs 608/8080 X ∠ (Date) 8/14/ Hydrocarbons 610/8310 Polycyclic Aromatic BTX 602/8015 (Company) 136129 625/8270 (GC/MS) Base/Neutral/Acids 602/8020 Relinquished by Aromatic Volatiles Halogenated Volatiles 601/8010 (Printed) (Time) (Sig) Volatile Organics 624/8240 (GC/MS) Matrix Laboratory: Louis Au aly 4, co Project Number: 00681-089-16-7 7105 7/2 Project Manager: Lee Hatcher 1135 Time 0/11 138 145 1142 24 HK 14/1/ Date Special Instructions/Comments: Turn around time: -Sampler's Initials: -Sampler's Signature: Sample ID MCC 6 0 MCC MCC

~ 4 W 7 N

Dames & Moore

MCC5

58734-01

8/14/96

8/15/96

8/15/96

98.8

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids

PCBs by USEPA Method 8080

2-2-2-1			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	106	1.0	50	150
Decachlorobiphenyl	102		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	0.1	riugo
Aroclor 1221	ND	0.1	
Aroclor 1232	ND	0.1	
Aroclor 1242	ND	0.1	
Aroclor 1248	ND	0.1	
Aroclor 1254	ND	0.1	
Aroclor 1260	1.5	0.1	
Aroclor 1262	ND	0.1	
Aroclor 1268	ND	0.1	

 Client Name
 Dames & Moore

 Client ID:
 MCC6

 Lab ID:
 58734-02

 Date Received:
 8/14/96

 Date Prepared:
 8/15/96

 Date Analyzed:
 8/15/96

 % Solids
 95.28

PCBs by USEPA Method 8080

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	<u> </u>	X8	50	150
Decachlorobiphenyl	V PO	X8	50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	2	
Aroclor 1221	ND	2	
Aroclor 1232	ND	2	
Aroclor 1242	ND	2	
Aroclor 1248	ND	2	
Aroclor 1254	ND	2	
Aroclor 1260	47	2	
Aroclor 1262	ND	2	
Aroclor 1268	ND	2	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:

% Solids

Dames & Moore MCC7 58734-03 8/14/96 8/15/96 8/15/96 99.07

PCBs by USEPA Method 8080

Branch Ask			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX		X8	50	150
Decachlorobiphenyl	L-	X8	50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	0.99	· iugo
Aroclor 1221	ND	0.99	
Aroclor 1232	ND	0.99	
Aroclor 1242	ND	0.99	
Aroclor 1248	ND	0.99	
Aroclor 1254	ND	0.99	
Aroclor 1260	13	0.99	
Aroclor 1262	ND	0.99	
Aroclor 1268	ND ·	0.99	

 Client Name
 Dames & Moore

 Client ID:
 MCC8

 Lab ID:
 58734-04

 Date Received:
 8/14/96

 Date Prepared:
 8/15/96

 Date Analyzed:
 8/15/96

 % Solids
 99.46

PCBs by USEPA Method 8080

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	2	X8	50	150
Decachlorobiphenyl	- -	X8	50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	0.97	to Medi
Aroclor 1221	ND	0.97	
Aroclor 1232	ND	0.97	
Aroclor 1242	ND	0.97	
Aroclor 1248	ND	0.97	
Aroclor 1254	ND	0.97	
Aroclor 1260	17	0.97	
Aroclor 1262	ND	0.97	
Aroclor 1268	ND	0.97	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:

% Solids

Dames & Moore MCC9 58734-05 8/14/96 8/15/96 8/15/96 99.38

PCBs by USEPA Method 8080

4.00			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	111		50	150
Decachlorobiphenyl	106		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	0.095	riugs
Aroclor 1221	ND	0.095	
Aroclor 1232	ND	0.095	
Aroclor 1242	ND	0.095	
Aroclor 1248	ND	0.095	
Aroclor 1254	ND	0.095	
Aroclor 1260	0.95	0.095	
Aroclor 1262	ND	0.095	
Aroclor 1268	ND	0.095	

Lab ID:

Method Blank - PCB704

Date Received:

Date Prepared: Date Analyzed:

8/15/96 8/15/96 100

% Solids

PCBs by USEPA Method 8080

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
TCMX	104		50	150	
Decachlorobiphenyl	101		50	150	

Result		
(mg/kg)	PQL	Flags
ND	0.092	
	(mg/kg) ND	(mg/kg) PQL ND 0.092 ND 0.092

Blank Spike/Blank Spike Duplicate Report

Lab ID:

Date Prepared: Date Analyzed: QC Batch ID: PCB704

8/15/96 8/15/96

PCB704

PCBs by USEPA Method 8080

	Blank	Spike	BS		BSD			
Assessment Control	Result	Amount,	Result	BS	Result	BSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Aroclor 1260	0	0.934	1.02	109	1.08	110	0.91	-

Matrix Spike/Matrix Spike Duplicate Report

Client Sample ID:

Lab ID:

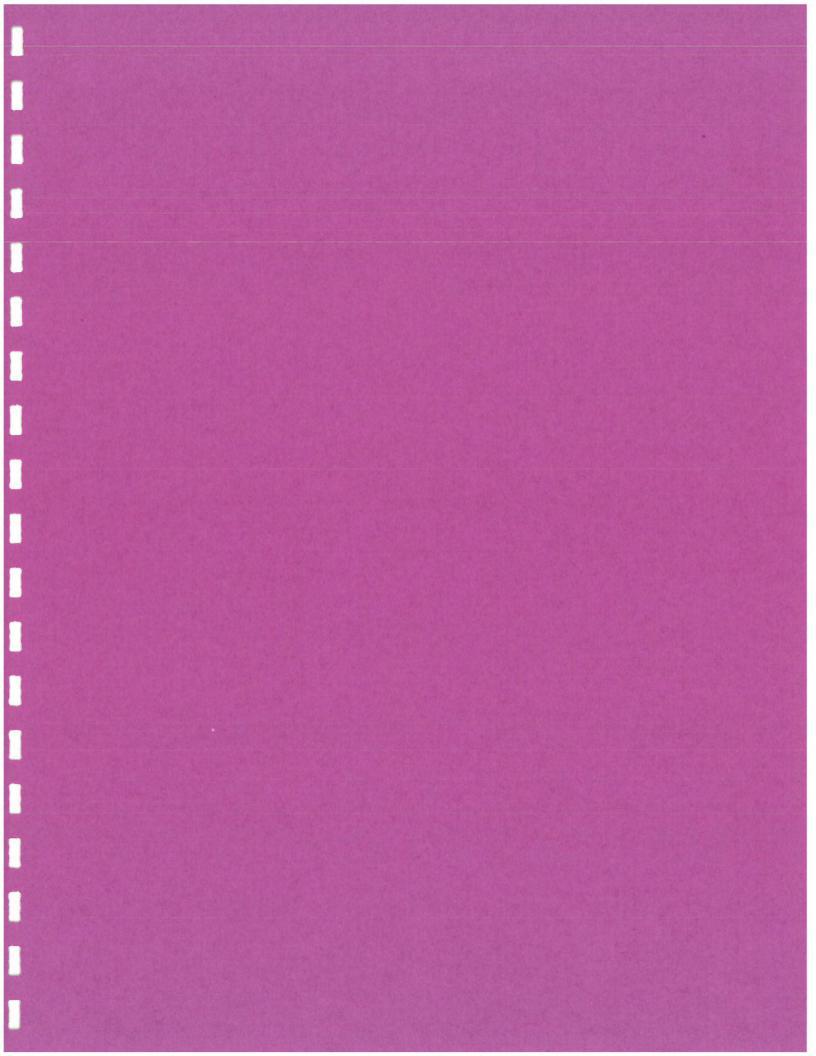
Date Prepared:

Date Analyzed:

QC Batch ID:

MCC5

58734-01


8/15/96

8/15/96

PCB704

PCBs by USEPA Method 8080

	Sample	Spike	MS		MSD			
	Result	Amount	Result	MS	Result	MSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Aroclor 1260	1.5	0.964	2.36	93.4	2.39	94.5	1.2	

ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

TRANSMITTAL MEMORANDUM

DATE: August 19, 1996

TO: Steve Hitch

Dames & Moore

PROJECT: 00681-089-163

REPORT NUMBER:

58791

Enclosed are the test results for two samples received at Sound Analytical Services on August 16, 1996.

The report consists of this transmittal memo, analytical results, quality control reports, a copy chain-of-custody, a list of data qualifiers when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (206) 922-2310.

Sincerely,

Darla Powell

Project Manager

DP:tm

Chain of Custody

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

DAMES & MOORE

Number of Containers Sample Receipt Total no. of containers: Chain of custody seals: Rec'd good condition/cold: Conforms to record: Instructions Comments/ Lab number: 6-16-94 (8) **EP TOX Metals** (Date)_ Metals (13) Priority Pollutant **Analysis Request** Received by (lab) (Printed) (Company) (Time)_ (Sig) Pesticides/PCBs 608/8080 Hydrocarbons 610/8310 Polycyclic Aromatic (Date) BTX 602/8015 625/8270 (GC/MS) Base/Neutral/Acids Relinquished by: Aromatic Volatiles 602/8020 (Company) Halogenated Volatiles 601/8010 (Printed)_ (Sig) (Time) 924/8240 (GC/MS) Volatile Organics Matrix 7/05 7/25 Time 9551194118 Project Number: CC 81-087 Lee Hal Turn around time: 241-1/18 Special Instructions/Comments: Date FAX GOSOAT Laboratory: MOKNING Project Manager: Sampler's Initials: Sampler's Signature: Sample ID クーレンス 110012

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:

Date Analyzed:

% Solids

Dames & Moore MCC10 58791-01 8/16/96 8/16/96 94.52

PCBs by USEPA Method 8080

12.700			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	131		50	150
Decachlorobiphenyl	112		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	0.1	9
Aroclor 1221	ND	0.1	
Aroclor 1232	ND	0.1	
Aroclor 1242	ND	0.1	
Aroclor 1248	ND	0.1	
Aroclor 1254	ND	0.1	
Aroclor 1260	0.11	0.1	
Aroclor 1262	ND	0.1	
Aroclor 1268	ND	0.1	

 Client Name
 Dames & Moore

 Client ID:
 MCC11

 Lab ID:
 58791-02

 Date Received:
 8/16/96

 Date Prepared:
 8/16/96

 Date Analyzed:
 8/16/96

 % Solids
 99.22

PCBs by USEPA Method 8080

			Recove	ry Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	140		50	150
Decachlorobjphenyl	119		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	0.097	
Aroclor 1221	ND	0.097	
Aroclor 1232	ND	0.097	
Aroclor 1242	ND	0.097	
Aroclor 1248	ND	0.097	
Aroclor 1254	ND	0.097	
Aroclor 1260	ND	0.097	
Aroclor 1262	ND	0.097	
Aroclor 1268	ND	0.097	

Lab ID:

Date Received:

Date Prepared: Date Analyzed:

% Solids

Method Blank - PCB707

8/16/96

8/16/96 100

PCBs by USEPA Method 8080

627 J. 1779 S. C. C.			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	135		50	150
Decachlorobiphenyl	117	~	50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	0.093	90
Aroclor 1221	ND	0.093	
Aroclor 1232	ND	0.093	
Aroclor 1242	ND	0.093	
Aroclor 1248	ND	0.093	
Aroclor 1254	ND	0.093	
Aroclor 1260	ND	0.093	
Aroclor 1262	ND	0.093	
Aroclor 1268	ND	0.093	

Blank Spike/Blank Spike Duplicate Report

Lab ID:

Date Prepared: Date Analyzed: QC Batch ID: PCB707

8/16/96 8/16/96

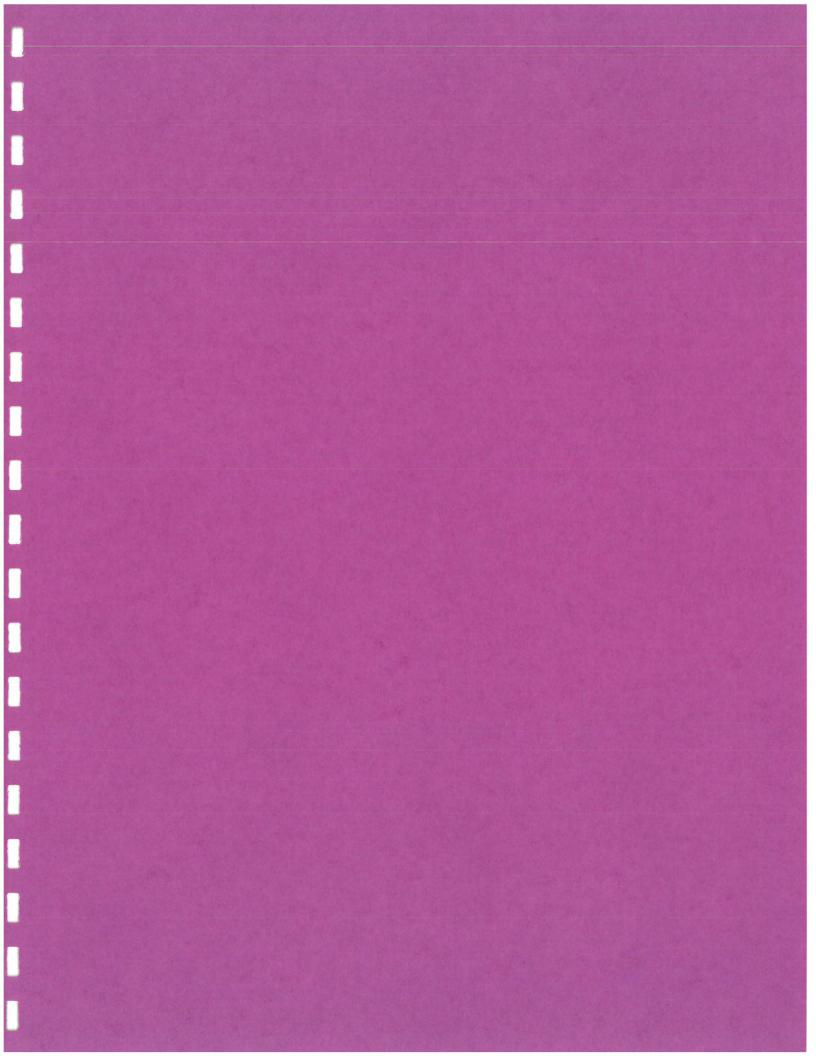
PCB707

	Blank	Spike	BS		BSD			
*	Result	Amount	Result	BS	Result	BSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Aroclor 1260	0	0.947	1.04	110	1.05	109	0.91	

Matrix Spike/Matrix Spike Duplicate Report

Client Sample ID: Lab ID:

Date Prepared: Date Analyzed: QC Batch ID: MCC10


58791-01

8/16/96

8/16/96

PCB707

	Sample	Spike	MS		MSD			
	Result	Amount	Result	MS	Result	MSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Aroclor 1260	0.11	0.993	1.16	106	1.18	107	0.94	

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

TRANSMITTAL MEMORANDUM

DATE: August 20, 1996

TO: Steve Hitch

Dames & Moore

PROJECT: McCarty

REPORT NUMBER: 58828

Enclosed are the test results for five samples received at Sound Analytical Services on August 19, 1996.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (206) 922-2310.

Sincerely,

Darla J. Powell Project Manager

DJP:tm

ANALYTICAL & ENVIRONMENTAL CHEMISTS

MACS CHAIN OF CHEMISTS

4813 Pacific Hwy. East Tacoma, Washington 98424 (206) 922-2310 • FAX (206) 922-5047

CHAIN OF CUSTODY / REQUEST FOR LABORATORY ANALYSIS

OLILIAI.	200								Ī								-	-			-
PROJECT NAME: McCarty	NAME: MC	Carty			səlit		bcB,			(sw/				Extraction —	tion					i	-
CONTACT: Steve Hitch	Steve	174.11				od Vola	_		9anics 240 (GC 320 (GC			(wole		səli	8					_	
PHONE NO: 728-074 9	: 728	640-	5		Conta	/ oitsm	8\S08 / orinate 8\808 /		8/\$29 \	1.814	genea	al Meta ecify be	sisisi	səliles ni-volat	ticides bicides						
LAB # SAI	SAMPLE I.D.	DATE	_	MATRIX		юлА	_	1 A ¶	Ebb			stoT eq2)			Pes						-
58861 MC	2177	SIMPLIZE		7/05	_		X	I													
1 3 MC	2177	95/61/8		7/05	_		λ														
																					Н
1 3 MCCW	13	8/19/9/1032		MIR	1		+														-
4 MCCW	CMS	1501/96/1034	S	SPE	_		+		_												
16 MC	5MJ	86/61/8		3dim	1		+														-
						-															-
					-	H	_		H	-					_			_			-
				i		-				H				H			H				
						H			\forall					H	\perp			\dashv		\forall	+
					+	+	+	Ī	+	+			t	+			+	+		+	+
					\dagger	+				+	-		+	H	-		H			1	+
	ngis /	Signature		Printed Name	Nam	0		Firm		Tim	Time / Date	ate	SPEC	HAL INS	твист	SPECIAL INSTRUCTIONS/COMMENTS:	MMENT	ij			
Relinquished By	Saphill	The state of the s	N.	Stephen	H.tch	7	Jamo	James Hore		196/6/19	6/12	1257	£ 5	ese sa eck th	s pox	will be	dispos	These samples will be disposed of 45 day Check this box to have samples returned	These samples will be disposed of 45 days after receipt Check this box to have samples returned \square .	after re	ceipt
Received By	SAM	Over		thin	Dy	141		SAS	8	19/	46 12:57	3	12	74	H	SUR	W	. 1	H		
Relinquished By	5			,									4	XX	A	FAX ASAP	d		727-3350	λ ₂	3
Received By																					
Relinquished By								1					-								
									_				à								

δ

 Client Name
 Dames & Moore

 Client ID:
 MCC12

 Lab ID:
 58828-01

 Date Received:
 8/19/96

 Date Prepared:
 8/19/96

 Date Analyzed:
 8/19/96

 % Solids
 99.33

PCBs by USEPA Method 8080

Ca. 1 Ca. Ca.			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	100		50	150
Decachlorobiphenyl	82		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	0.1	3-
Aroclor 1221	ND	0.1	
Aroclor 1232	ND	0.1	
Aroclor 1242	ND	0.1	
Aroclor 1248	ND	0.1	
Aroclor 1254	ND	0.1	
Aroclor 1260	1.2	0.1	
Aroclor 1262	ND	0.1	
Aroclor 1268	ND	0.1	

 Client Name
 Dames & Moore

 Client ID:
 MCC13

 Lab ID:
 58828-02

 Date Received:
 8/19/96

 Date Prepared:
 8/19/96

 Date Analyzed:
 8/20/96

 % Solids
 99.44

PCBs by USEPA Method 8080

			Recove	ry Limits	
Surrogate	% Recovery	Flags	Low	High	
TCMX		X8	50	150	
Decachlorobiphenyl	-	X8	50	150	

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	4.6	
Aroclor 1221	ND	4.6	
Aroclor 1232	ND	4.6	
Aroclor 1242	ND	4.6	
Aroclor 1248	ND	4.6	
Aroclor 1254	ND	4.6	
Aroclor 1260	48	4.6	
Aroclor 1262	ND	4.6	
Aroclor 1268	ND	4.6	

Client Name Client ID: Lab ID:

Date Received: Date Prepared:

Date Analyzed: % Solids Dames & Moore

MCCW1 58828-03 8/19/96

8/19/96 8/19/96

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	114		50	150
Decachlorobiphenyl	103		50	150

Result		
(ug/100 cm^2)	PQL	Flags
ND	0.5	7077
ND	0.5	
0.8	0.5	
ND	0.5	
ND	0.5	
	(ug/100 cm^2) ND	(ug/100 cm^2) PQL ND 0.5 ND 0.5

Client Name Client ID:

Lab ID:

Date Received: Date Prepared: Date Analyzed:

% Solids

Dames & Moore

MCCW2 58828-04

8/19/96

8/19/96

8/19/96

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	115		50	150
Decachlorobiphenyl	109	*	50	150

	Result	The Control of the Co	
Analyte	(ug/100 cm^2)	PQL	Flags
Aroclor 1016	ND	0.5	
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	1.4	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Client Name Client ID: Lab ID: Date Received:

Date Received: Date Prepared: Date Analyzed: % Solids Dames & Moore MCCW3 58828-05 8/19/96 8/19/96

8/19/96

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	116		50	150
Decachlorobiphenyl	97		50	150

	Result		
Analyte	(ug/100 cm^2)	PQL	Flags
Aroclor 1016	ND	0.5	7.7
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	2.3	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Lab ID:

Date Received: Date Prepared: Date Analyzed: Method Blank - PCB708

8/19/96 8/19/96

% Solids

	10 A A A A A A A A A A A A A A A A A A A		Recove	ry Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	102		50	150
Decachlorobiphenyl	100		50	150

	Result		
Analyte	(ug/100 cm^2)	PQL	Flags
Aroclor 1016	ND	0.5	, lugo
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	ND	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Lab ID:

Method Blank - PCB709

Date Received:

Date Prepared: Date Analyzed:

% Solids

8/19/96 8/19/96 100

PCBs by USEPA Method 8080

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
TCMX	101		50	150	
Decachlorobiphenyl	95		50	150	

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	0.095	
Aroclor 1221	ND	0.095	
Aroclor 1232	ND	0.095	
Aroclor 1242	ND	0.095	
Aroclor 1248	ND	0.095	
Aroclor 1254	ND	0.095	
Aroclor 1260	ND	0.095	
Aroclor 1262	ND	0.095	
Aroclor 1268	ND	0.095	

Blank Spike/Blank Spike Duplicate Report

Lab ID:

Date Prepared: Date Analyzed: QC Batch ID: PCB708

8/19/96 8/19/96

PCB708

	Blank	Spike	BS		BSD		
Compound Name	Result (ug/100 cm^2)	Amount (ug/100 cm^2)	Result	BS	Result	BSD	
Aroclor 1260	0	(ug/100 cm^2)	(ug/100 cm^2) 5.4	% Rec. 108	(ug/100 cm^2) 5.5	% Rec. 110	RPD

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared:

Date Analyzed: QC Batch ID: PCB709

8/19/96 8/19/96

PCB709

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD	.0	
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Aroclor 1260	0	0.926	0.917	99	0.928	101	2	

Matrix Spike/Matrix Spike Duplicate Report

Client Sample ID:

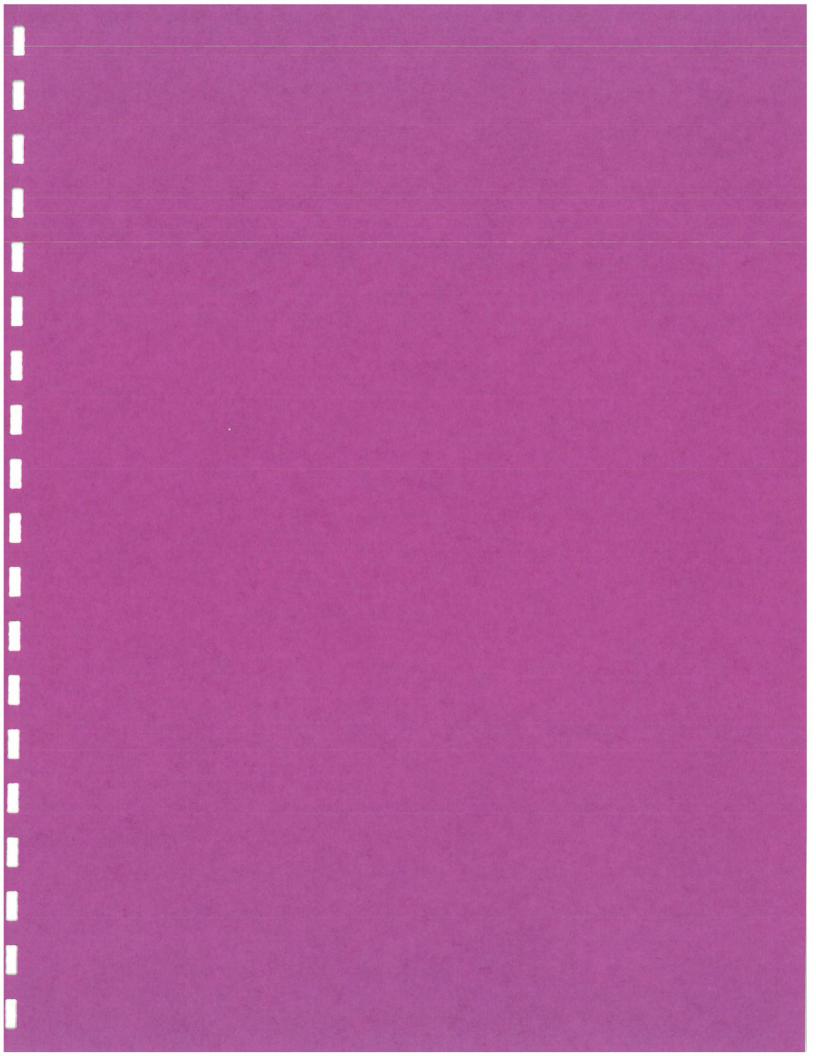
Lab ID:

Date Prepared:

Date Analyzed:

QC Batch ID:

MCC12


58828-01

8/19/96

8/19/96

PCB709

	Sample	Spike	MS		MSD			
	Result	Amount	Result	MS	Result	MSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Aroclor 1260	1.2	0.93	2.51	140	2.42	122	14	8

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

TRANSMITTAL MEMORANDUM

DATE: August 21, 1996

TO: Steve Hitch

Dames & Moore

PROJECT: 00681-089-163

REPORT NUMBER: 58840

Enclosed are the test results for two samples received at Sound Analytical Services on August 19, 1996.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (206) 922-2310.

Sincerely,

Darla Powell Project Manager

DP:tm

Chain of Custody

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744 DAMES & MOORE

Number of Containers Sample Receipt Chain of custody seals: Rec'd good condition/cold: Total no. of containers: Conforms to record: Instructions Comments/ 5-8840-Lab number: 9-61-8 (8) EP TOX Metals (Date)_ Metals (13) Priority Pollutant **Analysis Request** Received by (lab) 1645 (Company)-(Printed)_ (Time)_ ⊕(Sig) Pesticides/PCBs 60808/809 96/61 Hydrocarbons 610/8310 (Company) Names + Moore (Date)<u>8</u>/ Polycyclic Aromatic BTX 602/8015 625/8270 (GC/MS) Base/Neutral/Acids 602/8020 Relinquisped by Aromatic Volatiles 0108/109 (Printed) Halogenated Volatiles (Time) es4/8540 (ec/wa) Volatile Organics Project Number: <u>OO68/トゥを9・/ GS</u> Project Manager: <u>LRC Ha Johan</u> Matrix 218 Analytica Time (12h) 86/61/8 8/9/2/1422 HOOR Special Instructions/Comments: Tum around time: 24 Hr Date Sampler's Signature: Project Manager: -Sampler's Initials: Sample ID N MUSS MCSW

Client Name Client ID: Lab ID:

Date Received: Date Prepared: Date Analyzed:

% Solids

Dames & Moore

MCSW1 58840-01

8/19/96 8/20/96

8/20/96

Care Color			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	108		50	150
Decachlorobiphenyl	113		50	150

	Result		
Analyte	(ug/100 cm^2)	PQL	Flags
Aroclor 1016	ND	0.5	3
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	8.9	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:

% Solids

Dames & Moore MCSW2 58840-02 8/19/96 8/20/96 8/20/96

Parameter St.			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	112		50	150
Decachlorobiphenyl	131		50	150

	Result		
Analyte	(ug/100 cm^2)	PQL	Flags
Aroclor 1016	ND	0.5	3-
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND -	0.5	
Aroclor 1260	23	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Lab ID:

Date Received: Date Prepared:

Date Analyzed: % Solids

Method Blank - PCB711

8/20/96 8/20/96

2200			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	96		50	150
Decachlorobiphenyl	96		50	150

	Result		
Analyte	(ug/100 cm^2)	PQL	Flags
Aroclor 1016	ND	0.5	. lugo
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	ND	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

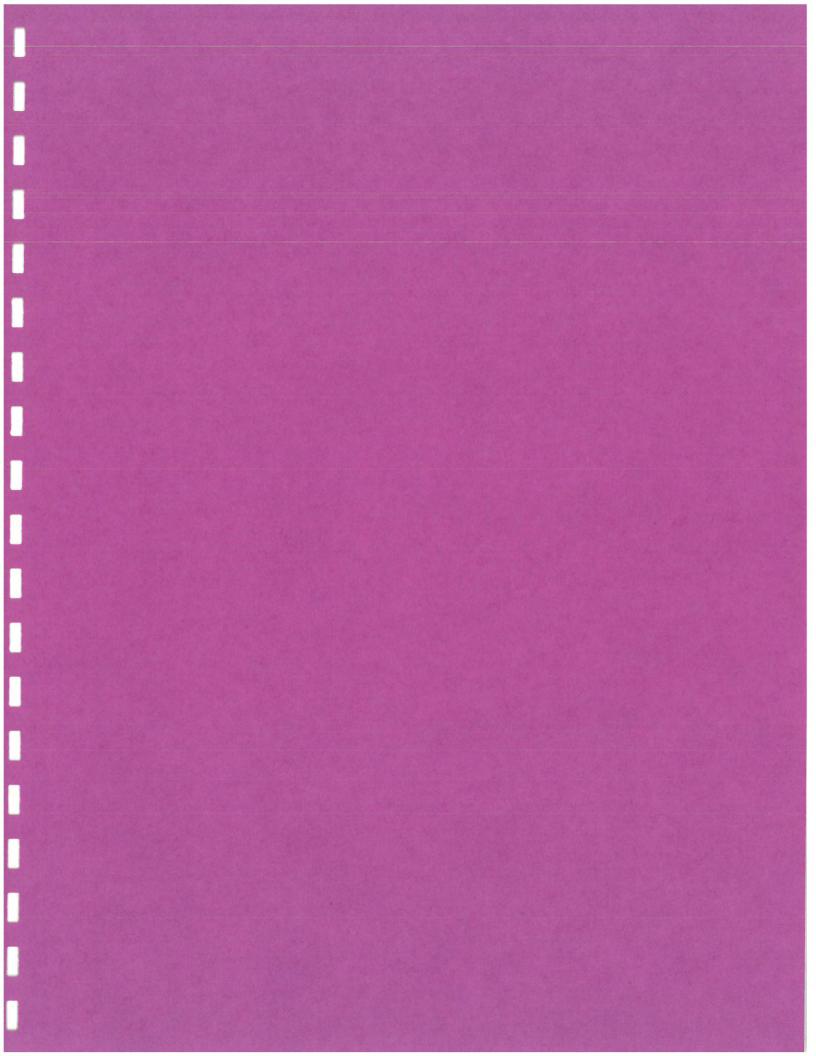
Blank Spike/Blank Spike Duplicate Report

Lab ID:

Date Prepared: Date Analyzed: QC Batch ID: PCB711

8/20/96 8/20/96

PCB711


PCBs by USEPA Method 8080

Blank Spike BS BSD Result Amount Result BS Result **BSD Compound Name** (ug/100 cm^2) (ug/100 cm^2) (ug/100 cm^2) % Rec. (ug/100 cm^2) % Rec. RPD Aroclor 1260 0 5 5.35 107 5.35 107 0

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 • TELEPHONE 206-922-2310 • FAX 206-922-5047

DATA QUALIFIERS AND ABBREVIATIONS

- B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).
- B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).
- C: Additional confirmation performed.
- D: The reported result for this analyte is calculated based on a secondary dilution factor.
- E: The concentration of this analyte exceeded the instrument calibration range.
- J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity
- MCL: Maximum Contaminant Level
- MDL: Method Detection Limit
- N: See analytical narrative.
- ND: Not Detected
- PQL: Practical Quantitation Limit
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be ______
- X2: Contaminant does not appear to be "typical" product. Further testing is suggested for identification.
- X3: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended.
- X4: RPD for duplicates outside advisory QC limits. Sample was re-analyzed with similar results.
- X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike was diluted out during analysis.
- X6: Recovery of matrix spike was outside advisory QC limits. Sample was re-analyzed with similar results.
- X7: Recovery of matrix spike outside advisory QC limits. Matrix interference is indicated by blank spike recovery dat:
- X7a: Recovery and/or RPD values for MS/MSD outside advisory QC limits due to high contaminant levels.
- X8: Surrogate was diluted out during analysis.
- X9: Surrogate recovery outside advisory QC limits due to matrix composition.

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

TRANSMITTAL MEMORANDUM

DATE: August 22, 1996

TO: Steve Hitch

Dames & Moore

PROJECT: McCarty

REPORT NUMBER: 58881

Enclosed are the test results for seven samples received at Sound Analytical Services on August 21, 1996.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers when applicable, and a copy of any requested raw data.

Analytical Narrative: The matrix spike duplicate recovery and the relative percent difference between the matrix spike duplicate were outside the Q.C. limits. The sample was nonhomogeneous, and no action was taken. The blank spike/blank spike duplicate were with in the Q.C. limits.

Should there be any questions regarding this report, please contact me at (206) 922-2310.

Sincerely,

Darla J/Powell Project Manager

DJP:tm

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 Pacific Hwy. East Tacoma, Washington 984 €-7 (206) 922-2310 • FAX (206) 922-5047

Client Name
Client ID:
Lab ID:
Date Received:

Date Received: Date Prepared: Date Analyzed: % Solids Dames & Moore MCN1 58881-01 8/21/96 8/21/96 8/21/96

98.43

PCBs by USEPA Method 8080

. Eroman and			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	107		50	150
Decachlorobiphenyl	102		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND .	0.098	i iugo
Aroclor 1221	ND	0.098	
Aroclor 1232	ND	0.098	
Aroclor 1242	ND	0.098	
Aroclor 1248	ND	0.098	
Aroclor 1254	ND	0.098	
Aroclor 1260	1.6	0.098	
Aroclor 1262	ND	0.098	
Aroclor 1268	ND	0.098	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids

Dames & Moore MCNW1 58881-02 8/21/96 8/21/96 8/21/96

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	91		50	150
Decachlorobiphenyl	89		50	150

	Result		
Analyte	(ug/100 cm^2)	PQL	Flags
Aroclor 1016	ND	0.5	2272
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	11	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Client Name Client ID: Lab ID; Date Received:

Date Prepared: Date Analyzed: % Solids Dames & Moore MCNW2 58881-03

8/21/96 8/21/96 8/21/96

Surrogate			Recove	ery Limits
	% Recovery	Flags	Low	High
TCMX		X8	50	150
Decachlorobiphenyl	4	X8	50	150

	Result		
Analyte	(ug/100 cm^2)	PQL	Flags
Aroclor 1016	ND	10	
Aroclor 1221	ND	10	
Aroclor 1232	ND	10	
Aroclor 1242	ND	10	
Aroclor 1248	ND	10	
Aroclor 1254	ND	10	
Aroclor 1260	160	10	
Aroclor 1262	ND	10	
Aroclor 1268	ND	10	

Client Name

Client ID:

Lab ID: Date Received:

Date Prepared: Date Analyzed:

% Solids

Dames & Moore

MCNW3

58881-04

8/21/96

8/21/96

8/21/96

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	20 mg	X8	50	150
Decachlorobiphenyl	-	X8	50	150

	Result		
Analyte	(ug/100 cm^2)	PQL	Flags
Aroclor 1016	ND	25	
Aroclor 1221	ND	25	-
Aroclor 1232	ND	25	
Aroclor 1242	ND	25	
Aroclor 1248	ND	25	
Aroclor 1254	ND	25	
Aroclor 1260	470	25	
Aroclor 1262	ND	25	
Aroclor 1268	ND	25	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids

Dames & Moore MCNW4 58881-05 8/21/96 8/21/96 8/21/96

PCBs by USEPA Method 8080 .

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	94		50	150
Decachlorobiphenyl	91		50	150

	Result		
Analyte	(ug/100 cm^2)	PQL	Flags
Aroclor 1016	ND	0.5	i lugo
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	7	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids

Dames & Moore MCNW4D 58881-06 8/21/96 8/21/96 8/21/96

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	97		50	150
Decachlorobiphenyl	96		50	150

	Result		
Analyte	(ug/100 cm^2)	PQL	Flags
Aroclor 1016	ND	0.5	6 9 5 4
Aroclor 1221	ND .	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	11	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:

% Solids

Dames & Moore MCB1 58881-07 8/21/96 8/21/96 8/21/96

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	89		50	150
Decachlorobiphenyl	88		50	150

	Result		
Analyte	(ug/100 cm^2)	PQL	Flags
Aroclor 1016	ND	0.5	
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	ND	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Lab ID:

Method Blank - PCB715

Date Received:

Date Prepared:

Date Analyzed: % Solids 8/21/96 8/21/96 100

PCBs by USEPA Method 8080

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	102		50	150
Decachlorobiphenyl	100		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	0.097	riugs
Aroclor 1221	ND	0.097	
Aroclor 1232	ND	0.097	
Aroclor 1242	ND	0.097	
Aroclor 1248	ND	0.097	
Aroclor 1254	ND	0.097	
Aroclor 1260	ND	0.097	
Aroclor 1262	ND	0.097	
Aroclor 1268	ND	0.097	

Blank Spike/Blank Spike Duplicate Report

Lab ID:

Date Prepared: Date Analyzed: QC Batch ID: PCB715

8/21/96 8/21/96

PCB715

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Aroclor 1260	0	0.913	0.976	107	1.03	107	0	3

Matrix Spike/Matrix Spike Duplicate Report

Client Sample ID:

Lab ID:

Date Prepared:

Date Analyzed:

QC Batch ID:

MCN1

58881-01

8/21/96

8/21/96

PCB715

	Sample	Spike	MS		MSD			
	Result	Amount	Result	MS	Result	MSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Aroclor 1260	1.6	0.989	2.4	80.8	4.71	311	120	N

Lab ID:

Method Blank - PCB714

Date Received: Date Prepared:

8/21/96 8/21/96

Date Analyzed: % Solids

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	93		50	150
Decachlorobiphenyl	104		50	150

	Result		
Analyte	(ug/100 cm^2)	PQL	Flags
Aroclor 1016	ND	0.5	9
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	ND	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

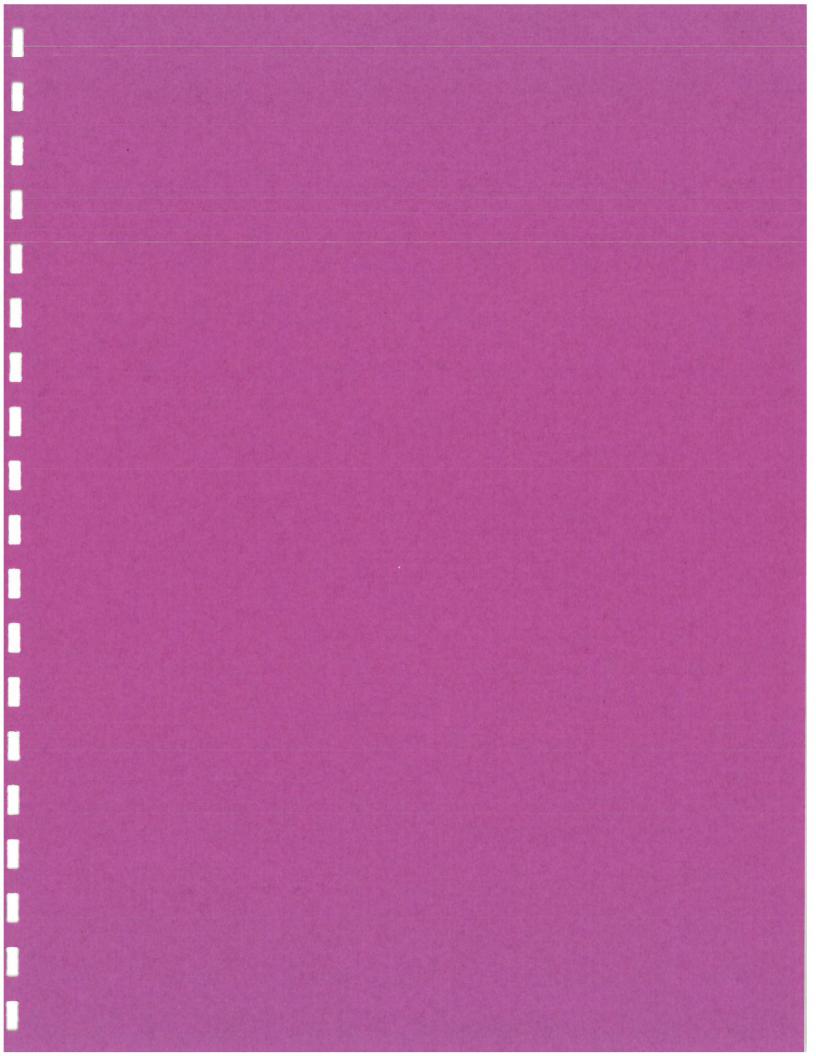
Blank Spike/Blank Spike Duplicate Report

Lab ID:

Date Prepared: Date Analyzed: PCB714

8/21/96

8/21/96 PCB714


QC Batch ID: PCBs by USEPA Method 8080

Blank Spike BS BSD Result **Amount** Result BS Result BSD **Compound Name** (ug/100 cm^2) (ug/100 cm^2) (ug/100 cm^2) % Rec. (ug/100 cm^2) % Rec. **RPD** Aroclor 1260 0 5 5.1 102 5.15 103 0.98

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 • TELEPHONE 206-922-2310 • FAX 206-922-5047

DATA QUALIFIERS AND ABBREVIATIONS

- B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).
- B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).
- C: Additional confirmation performed.
- D: The reported result for this analyte is calculated based on a secondary dilution factor.
- E: The concentration of this analyte exceeded the instrument calibration range.
- J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.
- MCL: Maximum Contaminant Level
- MDL: Method Detection Limit
- N: See analytical narrative.
- ND: Not Detected
- PQL: Practical Quantitation Limit
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be ______.
- X2: Contaminant does not appear to be "typical" product. Further testing is suggested for identification.
- X3: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended.
- X4: RPD for duplicates outside advisory QC limits. Sample was re-analyzed with similar results.
- X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike was diluted out during analysis.
- X6: Recovery of matrix spike was outside advisory QC limits. Sample was re-analyzed with similar results.
- X7: Recovery of matrix spike outside advisory QC limits. Matrix interference is indicated by blank spike recovery data.
- X7a: Recovery and/or RPD values for MS/MSD outside advisory QC limits due to high contaminant levels.
-) X8: Surrogate was diluted out during analysis.
 - X9: Surrogate recovery outside advisory QC limits due to matrix composition.

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

TRANSMITTAL MEMORANDUM

DATE: August 23, 1996

TO:

Steve Hitch

Dames & Moore

PROJECT:

00681-089-163

REPORT NUMBER: 58894

Enclosed are the test results for one sample received at Sound Analytical Services on August 21, 1996.

The report consists of this transmittal memo, analytical quality control reports, a copy chain-of-custody, a list of data qualifiers when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (206) 922-2310.

Sincerely,

Project Manager

DP:tm

DAMES & MOORE

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

Chain of Custody

Number of Containers Sample Receipt Total no. of containers: Chain of custody seals: Rec'd good condition/cold: Conforms to record: Instructions Comments/ Lab number: (8) **EP TOX Metals** (Date) Metals (13) Priority Pollutant Analysis Request Received by (lab) 3 (Company) (Printed) (Time)_ Pesticides/PCBs . (Date) 8/21/1/4 Hydrocarbons 610/8310 Polycyclic Aromatic DAMIES+ MOOK BTX 602/8015 625/8270 (GC/MS) Base/Neutral/Acids 005 602/8020 Relinquished by Aromatic Volatiles (Cómpany) 0108/109 Halogenated Volatiles (Printed) (Time)_ (Sig) Volatile Organics 624/8240 (GC/MS) Matrix Project Number: CCS/-cS9-163 A 1. C/ W. C. 2016 pe Hatcher Time 224 T Special Instructions/Comments: Date 17 Project Manager: -Laboratory: Tum around time: Sampler's Initials: Sampler's Signature: 7 Sample ID 5

 Client Name
 Dames & Moore

 Client ID:
 MCC14

 Lab ID:
 58894-01

 Date Received:
 8/21/96

 Date Prepared:
 8/22/96

 Date Analyzed:
 8/22/96

 % Solids
 99.28

PCBs by USEPA Method 8080

San Carlotte			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX		X8	50	150
Decachlorobiphenyl	-	X8	50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	9.6	,50
Aroclor 1221	ND	9.6	
Aroclor 1232	ND	9.6	
Aroclor 1242	ND	9.6	
Aroclor 1248	ND	9.6	
Aroclor 1254	ND	9.6	
Aroclor 1260	190	9.6	
Aroclor 1262	ND	9.6	
Aroclor 1268	ND	9.6	

Lab ID:

Method Blank - PCB717

Date Received:

8/22/96

Date Prepared: Date Analyzed: % Solids

8/22/96

PCBs by USEPA Method 8080

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	100	A	50	150
Decachlorobiphenyl	89		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	0.096	
Aroclor 1221	ND	0.096	
Aroclor 1232	ND	0.096	
Aroclor 1242	ND	0.096	
Aroclor 1248	ND	0.096	
Aroclor 1254	ND	0.096	
Aroclor 1260	ND	0.096	
Aroclor 1262	ND	0.096	
Aroclor 1268	ND	0.096	

Blank Spike/Blank Spike Duplicate Report

Lab ID:

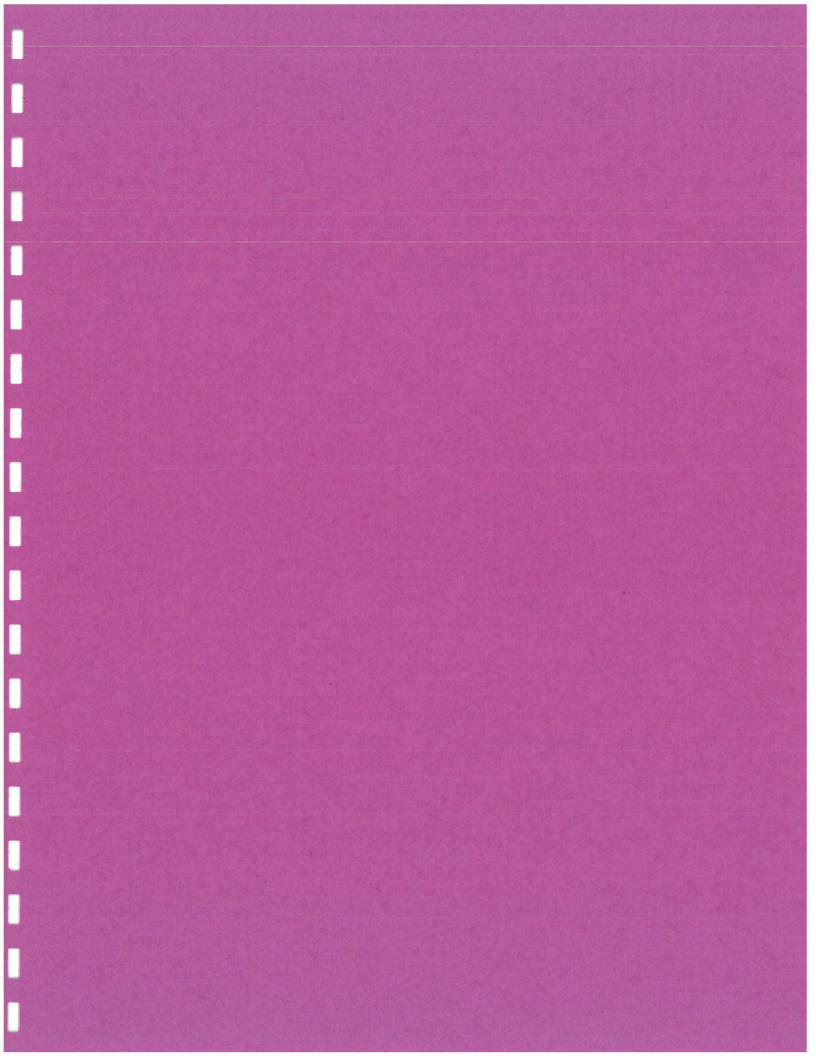
Date Prepared: Date Analyzed: QC Batch ID: PCB717

8/22/96

8/22/96

PCB717

Blank	Spike	BS		BSD			
Result (mg/kg) 0	Amount (mg/kg) 0.979	Result (mg/kg)	BS % Rec.	Result (mg/kg)	BSD % Rec.	RPD	Flag
	Result	Result Amount	Result Amount Result (mg/kg) (mg/kg) (mg/kg)	Result Amount Result BS (mg/kg) (mg/kg) (mg/kg) (mg/kg) % Rec.	Result Amount Result BS Result (mg/kg) (mg/kg) (mg/kg) % Rec. (mg/kg)	Result Amount Result BS Result BSD (mg/kg) (mg/kg) (mg/kg) % Rec. (mg/kg) % Rec.	Result Amount Result BS Result BSD (mg/kg) (mg/kg) (mg/kg) % Rec. (mg/kg) % Rec. RPD


4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 • TELEPHONE 206-922-2310 • FAX 206-922-5047

DATA QUALIFIERS AND ABBREVIATIONS

This analyte was detected in the associated method blank. The analyte concentration was determined not to be B1: significantly higher than the associated method blank (less than ten times the concentration reported in the blank). This analyte was detected in the associated method blank. The analyte concentration in the sample was determined B2: to be significantly higher than the method blank (greater than ten times the concentration reported in the blank). Additional confirmation performed. C: The reported result for this analyte is calculated based on a secondary dilution factor. D: The concentration of this analyte exceeded the instrument calibration range. E: J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity. MCL: Maximum Contaminant Level Method Detection Limit MDL: N: See analytical narrative. ND: Not Detected PQL: **Practical Quantitation Limit** Contaminant does not appear to be "typical" product. Elution pattern suggests it may be X1: X2: Contaminant does not appear to be "typical" product. Further testing is suggested for identification. Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is X3: recommended. X4: RPD for duplicates outside advisory QC limits. Sample was re-analyzed with similar results. RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation X4a: limit/detection limit. Matrix spike was diluted out during analysis. X5: X6: Recovery of matrix spike was outside advisory QC limits. Sample was re-analyzed with similar results. X7: Recovery of matrix spike outside advisory QC limits. Matrix interference is indicated by blank spike recovery data. Recovery and/or RPD values for MS/MSD outside advisory QC limits due to high contaminant levels. X7a: X8: Surrogate was diluted out during analysis.

Surrogate recovery outside advisory QC limits due to matrix composition.

X9:

ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

TRANSMITTAL MEMORANDUM

DATE: August 26, 1996

TO:

Steve Hitch

Dames & Moore

PROJECT:

00681-089-163

REPORT NUMBER: 58962

Enclosed are the test results for two samples received at Sound Analytical Services on August 23, 1996.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of chain-of-custody, a list of data qualifiers when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (206) 922-2310.

Sincerely,

Project Manager

DP:tm

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

1. CIE 2

Chain of Custody

Sontainers	o to tedr	MuM	-	_		1								T		T		1
Comments/	instructions													Sample Receipt	Total no. of containers:	Chain of custody seals:	Rec'd good condition/cold: Conforms to record:	Lab number:
	(13)	19M													W. M. Chr.	Jan 1	1,45	(Date)
														Received by (lab):	(6.5)	(Printed)	(Company)	(Time)/
			X	X												_	-	76/2
															1	4.4	NK E	e)2/2
																9.	, Mr	- (Date) 🗸
																13	146	9
olatiles	oV ottsm	отА															Y	20
10.000	etsnago	Halo												nquish		1	npany	(e)
solics (otile Org (C)													Reli	ois)	(Prir	3	(Time)_
100		Matrix	7105	2017														
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11/1	Time	220	225												()	10 4	44
777	7/1/2	Date	3/3. shy	4.3/h										nments:		-\	ライン	7-0744
Project Manager: ← Laboratory: ☆ Tum around time: △	Sampler's Initials:	Sample ID	1CC 140	((14 01										ecial Instructions/Cor	1210	NOX		117H KE JES-
	anics SC/MS) A Volatiles A Volatiles A Volatiles A Volatiles A SC/MS) Tals Comments/	TOX Metals Comments Comm	Date Time Matrix Volatiles Gos/8020 Gos/8010 Pesticides/PCBs Base/Neutral/Acids Gos/8020 Pesticides/PCBs Pesticides/PCBs Gos/80310 Pesticides/PCBs Gos/80310 Pesticides/PCBs Gos/8080 G	Date Time Matrix Comments Pesticides/PCBs Base/Neutral/Acids Comments Priority Pollutant Pholycyclic Aromatic Base/Neutral/Acids Base/Neutral/Acids Base/Neutral/Acids Priority Pollutant Phosticides/PCBs Pesticides/PCBs Pesticides/PCBs Pesticides/PCBs Pesticides/PCBs Priority Pollutant Phost (13) Phost (14) Phost (15) Phost (1	Date Time Matrix Comments Priority Pollutant Priority Priority Pollutant Priority Pollutant Priority P	Date Time Matrix Watrix 122 Sold Pesticides (13) Priority Pollutant Priority Pollutant Priority Pollutant Priority Pollutant Priority Pollutant Priority Pollutant Wetals (13) Priority Pollutant Wetals (13) Priority Pollutant Date Time Matrix Onables Watrix Date Time Matrix Wolatile Organics Governor Halogenated Volatiles Governor Halogenated Volatiles Governor Halogenated Volatiles Base/Neutralvecides Priority Pollutant Priority Pollutant Wetals (13) Priority Pollutant Wetals (13) Priority Pollutant Wetals (13) Priority Pollutant Wetals (13) Priority Pollutant Onments Onments Onments	Date Time Matrix Pollutant Metals (13) Polycyclic Aromatic Aromat	Date Annable Volatiles Volatile Organics Annable Volatiles Exp. R270 (GC/MS) Pedicaled Volatiles R25 (GC/MS) Phytocarbons 610/8310 Phyt	Date Time Matrix Date Time Matrix Volatile Organics Aconado Volatiles Aconado Volatiles Aconado Volatiles Base/Neural/Acids Base/Neural/Acids Aconado Volatiles Aconado Volatiles Base/Neural/Acids Base/Neural/Acids Aconado Volatiles Aconado Volatiles Aconado Volatiles Base/Neural/Acids Aconado Volatiles Base/Neural/Acids Aconado Volatiles Base/Neural/Acids Base/Neural/Acids Aconado Volatiles Base/Neural/Acids Base/Neural/Acids Aconado Volatiles Base/Neural/Acids Base/Neural/Aci	Date of the polycycle o	Date of the property of the pr	Date of the state	Dail of the control o	The first state of the first sta	Reinnquished by: Reinnquished by: Received by (lab): Sample Receipt Till III III III III III III III III III	Received by (lab): Sample Received by (lab): Omment Chairs of contained and contained to the contained and contained to the	Time Matrix in Comments Comments Commen	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids

Dames & Moore MCC14D 58962-01 8/23/96 8/24/96 8/26/96 99.46

PCBs by USEPA Method 8080

Commence			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	•	X8	50	150
Decachlorobiphenyl	ê	X8	50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	1.9	i lags
Aroclor 1221	ND	1.9	
Aroclor 1232	ND	1.9	
Aroclor 1242	ND	1.9	
Aroclor 1248	ND	1.9	
Aroclor 1254	ND	1.9	
Aroclor 1260	15		
Aroclor 1262	ND	1.9	
Aroclor 1268	ND	1.9	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	IND	1.9	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids

Dames & Moore MCC14D1 58962-02 8/23/96 8/24/96 8/26/96 99.35

PCBs by USEPA Method 8080

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	¥ .	X8	50	150
Decachlorobiphenyl	**************************************	X8	50	150

		Result		
Analyte		(mg/kg)	PQL	Flags
Aroclor 1016		ND	4.9	
Aroclor 1221		ND	4.9	
Aroclor 1232	T =	ND	4.9	
Aroclor 1242		ND.	4.9	
Aroclor 1248		ND	4.9	
Aroclor 1254		ND	4.9	
Aroclor 1260			49 4.9	
Aroclor 1262		ND	4.9	
Aroclor 1268		ND	4.9	

Lab ID:

Method Blank - PCB721

Date Received:

Date Prepared:

Date Analyzed:

% Solids

8/24/96 8/24/96

100

PCBs by USEPA Method 8080

L_00444		V. A	Recove	ry Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	99		50	150
Decachlorobiphenyl	98		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	0.091	30
Aroclor 1221	ND	0.091	
Aroclor 1232	ND	0.091	
Aroclor 1242	ND	0.091	
Aroclor 1248	ND	0.091	
Aroclor 1254	ND	0.091	
Aroclor 1260	ND	0.091	
Aroclor 1262	ND	0.091	
Aroclor 1268	ND	0.091	

Blank Spike/Blank Spike Duplicate Report

Lab ID:

Date Prepared: Date Analyzed:

QC Batch ID:

PCB721

8/24/96

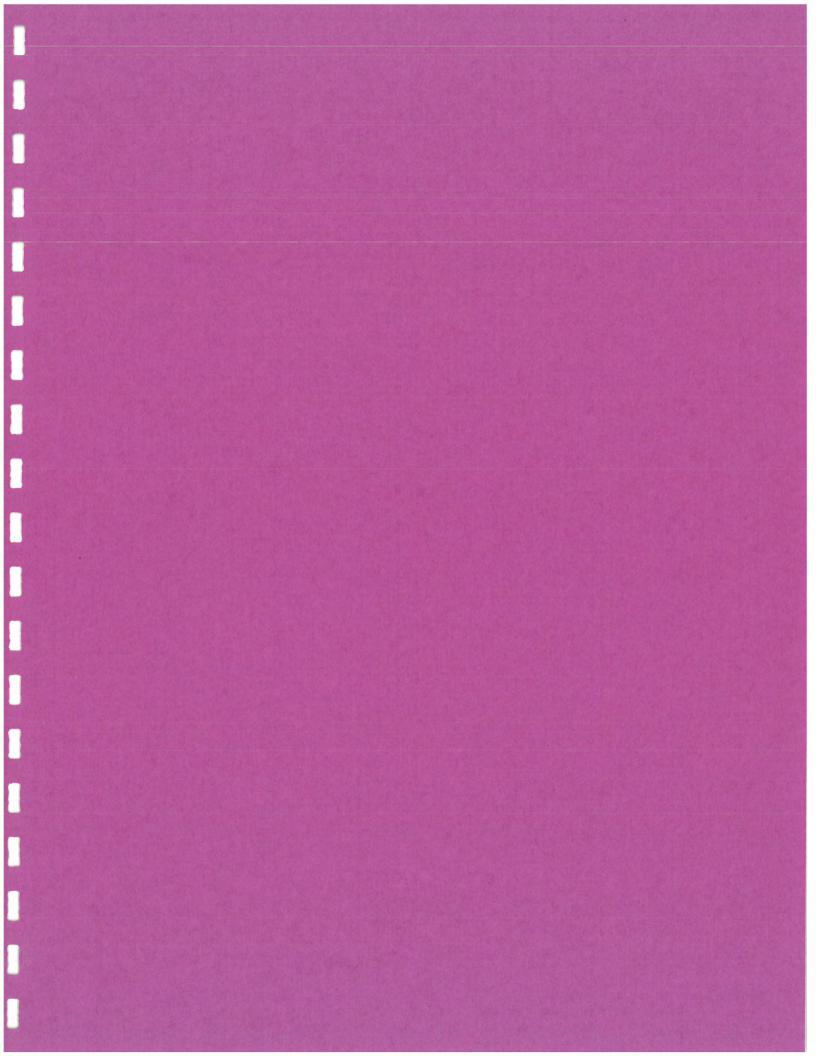
8/24/96

PCB721

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Aroclor 1260	0	0.941	0.951	101	0.952	102	0.99	

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 • TELEPHONE 206-922-2310 • FAX 206-922-5047

DATA QUALIFIERS AND ABBREVIATIONS


This analyte was detected in the associated method blank. The analyte concentration was determined not to be B1: significantly higher than the associated method blank (less than ten times the concentration reported in the blank). This analyte was detected in the associated method blank. The analyte concentration in the sample was determined B2: to be significantly higher than the method blank (greater than ten times the concentration reported in the blank). C: Additional confirmation performed. The reported result for this analyte is calculated based on a secondary dilution factor. D: E: The concentration of this analyte exceeded the instrument calibration range. The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity. J: MCL: Maximum Contaminant Level MDL: Method Detection Limit N: See analytical narrative. ND: Not Detected PQL: Practical Quantitation Limit X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be X2: Contaminant does not appear to be "typical" product. Further testing is suggested for identification. X3: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended. X4: RPD for duplicates outside advisory QC limits. Sample was re-analyzed with similar results. RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation X4a: limit/detection limit. X5: Matrix spike was diluted out during analysis. X6: Recovery of matrix spike was outside advisory QC limits. Sample was re-analyzed with similar results. X7: Recovery of matrix spike outside advisory QC limits. Matrix interference is indicated by blank spike recovery data.

Recovery and/or RPD values for MS/MSD outside advisory QC limits due to high contaminant levels.

X8: Surrogate was diluted out during analysis.

X7a:

X9: Surrogate recovery outside advisory QC limits due to matrix composition.

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

TRANSMITTAL MEMORANDUM

DATE: August 29, 1996

TO:

Lee Hatcher

Dames & Moore

PROJECT: 00681-089-163

REPORT NUMBER:

59074

Enclosed are the test results for one sample received at Sound Analytical Services on August 29, 1996.

The report consists of this transmittal memo, analytical control reports, a results, quality of copy chain-of-custody, a list of data qualifiers when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (206) 922-2310.

Sincerely,

Project Manager

として

Chain of Custody

DAMES & MOORE

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

Number of Containers Sample Receipt Rec'd good condition/cold: Total no. of containers: Chain of custody seals: Conforms to record: Instructions Comments/ (sab number: (8) **EP TOX Metals** (Date)_ Metals (13) Priority Pollutant **Analysis Request** (Printed) // (B.n. (Company) Received by (lab) (Sig)////Ois) (Time)_ Pesticides/PCBs 608/8080 (Date) 8/2 1/26 (Company) AAJE SA MOORE Hydrocarbons 610/8310 Polycyclic Aromatic BTX 602/8015 625/8270 (GC/MS) Base/Neutral/Acids (Time) 0918 Relinquished by: Aromatic Volatiles 0108/109 (Printed) _ Halogenated Volatiles (Sig) -Volatile Organics 624/8240 (GC/MS) 2016 Matrix THIS THEH MOTE TIME Project Number: 0068/-089-163 roon ky stemitis 5/8 Preliminary results Time Laboratory: Social Alex 1276 Date Special Instructions/Comments: Tum around time: -Project Manager: -Sampler's Initials: -Sampler's Signature: ンノレンス Sample ID

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids

Dames & Moore MCC15 59074-01 8/29/96 8/29/96 8/29/96 99.6

PCBs by USEPA Method 8080

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	123		50	150
Decachlorobiphenyl	124		50	150

	Res	sult			
Analyte	(mg	/kg)	PQL		Flags
Aroclor 1016	ND		0.097		
Aroclor 1221	ND		0.097		
Aroclor 1232	ND		0.097		
Aroclor 1242	ND		0.097		
Aroclor 1248	ND		0.097		
Aroclor 1254	ND		0.097	.4	
Aroclor 1260		1.7	0.097		
Aroclor 1262	ND		0.097		
Aroclor 1268	ND		0.097		

Lab ID:

Method Blank - PCB727

8/29/96

100

Date Received:

Date Prepared: Date Analyzed:

8/29/96 % Solids

PCBs by USEPA Method 8080

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	108		50	150
Decachlorobiphenyl	110		50	150

*	Result		
Analyte	(mg/kg)	PQL	Flags
Aroclor 1016	ND	0.099	-
Aroclor 1221	ND	0.099	
Aroclor 1232	ND	0.099	
Aroclor 1242	ND	0.099	
Aroclor 1248	ND	0.099	
Aroclor 1254	ND	0.099	
Aroclor 1260	ND	0.099	
Aroclor 1262	ND	0.099	
Aroclor 1268	ND	0.099	

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared:

Date Analyzed: QC Batch ID: PCB727 8/29/96

8/29/96

PCB727

	Blank	Spike	BS		BSD			
Compound Name Aroclor 1260	Result (mg/kg) 0	Amount (mg/kg) 0.916	Result (mg/kg) 0.943	BS % Rec. 103	Result (mg/kg) 0.994	BSD % Rec. 108	RPD 4.7	Flag

Matrix Spike/Matrix Spike Duplicate Report

Client Sample ID:

Lab ID:

Date Prepared:

Date Analyzed:

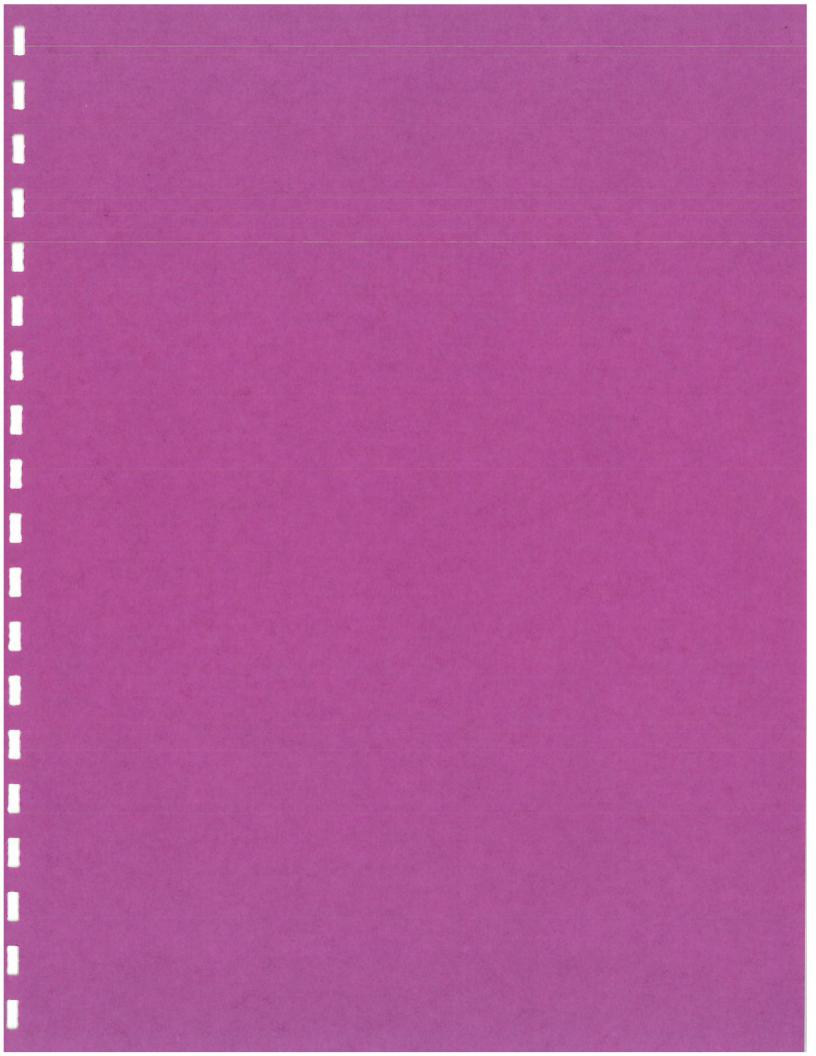
QC Batch ID:

MCC15

59074-01

8/29/96

8/29/96


PCB727

	Sample	Spike	MS		MSD			
	Result	Amount	Result	MS	Result	MSD		
Compound Name.	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Aroclor 1260	1.7	0.978	2.53	82.3	2.42	73.7	11	119

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 • TELEPHONE 206-922-2310 • FAX 206-922-5047

DATA QUALIFIERS AND ABBREVIATIONS

- B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).
- B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).
- C: Additional confirmation performed.
- D: The reported result for this analyte is calculated based on a secondary dilution factor.
- E: The concentration of this analyte exceeded the instrument calibration range.
- J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.
- MCL: Maximum Contaminant Level
- MDL: Method Detection Limit
- N: See analytical narrative.
- ND: Not Detected
- PQL: Practical Quantitation Limit
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be ______
- X2: Contaminant does not appear to be "typical" product. Further testing is suggested for identification.
- X3: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended.
- X4: RPD for duplicates outside advisory QC limits. Sample was re-analyzed with similar results.
- X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike was diluted out during analysis.
- X6: Recovery of matrix spike was outside advisory QC limits. Sample was re-analyzed with similar results.
- X7: Recovery of matrix spike outside advisory QC limits. Matrix interference is indicated by blank spike recovery data.
- X7a: Recovery and/or RPD values for MS/MSD outside advisory QC limits due to high contaminant levels.
- X8: Surrogate was diluted out during analysis.
- X9: Surrogate recovery outside advisory QC limits due to matrix composition.

3 September 1996

Lee Hatcher Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: 00681-089-163, U of W; ARI Job #: P957

Dear Mr. Hatcher,

Please find enclosed the original chain-of-custody (COC) records and results for samples from the above referenced project. Seventeen wipe samples were received in good condition on 8/28/96. There were no discrepancies between the COCs and sample labels, and they were logged into the laboratory without incident of note.

Analyses for PCBs were performed by EPA method 8081. They were routine, and these results were faxed to you earlier today. Note that samples MCSW5 and MCNW7 were reanalyzed at dilutions because aroclor-1260 concentrations were above the linear range of instrument calibration. Both sets of results are included.

A Laboratory Control Sample was extracted and analyzed with the samples, and a recovery report is included to provide QC documentation for the project.

A copy of this package will be kept on file should you need additional information at a future date. If you have questions or need additional documentation, please call me any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Manager

206-340-2866, ext. 117

Enclosures cc: file #P957

DAMES & MOORE

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

क्टिवरा + egg . Number of Containers Sample Receipt Total no. of containers: Rec'd good condition/cold: Chain of custody seals: Conforms to record: Comments/ Instructions Lab number: (8) (Date) **EP TOX Metals** Metals (13) Priority Pollutant **Analysis Request** (Printed) Received by (lab) (Company) (Time) **/6**2 (Sig) (Date) 8/28/96 Pesticides/PCB9 60808/809 西出 Hydrocarbons 610/8310 Polycyclic Aromatic BTX 602/8015 625/8270 (GC/MS) Base/Neutral/Acids (Time) \$20 Relinquished by: 602/8020 Aromatic Volatiles Halogenated Volatiles 601/8010 (Company) (Printed) (Sig) Volatile Organics (GC/MS) Matrix 1510 WIPE 8/284/1546 WIRE Project Number: 0068/089-163 Hatcher Time 15/2 230 525 518 2520 1522 425 1919 915 124 8/28/4 Special Instructions/Comments: Date Project Manager: -Laboratory: -Tum around time: Sampler's Initials: Sampler's Signature: MC5612 MUSEUID MCSWB MCSE 3 とのこのと N 56 8 Mesug かららかし Meswil MUSMB Sample ID MUSENS

Chain of Custody

111

Chain of Cus

jo J

DAMES & MOORE

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

Chain of Custody

17

Number of Containers Sample Receipt Total no. of containers: Chain of custody seals: Rec'd good condition/cold: Conforms to record: Instructions Comments/ LA ab number: (8) (Date) EP TOX Metals Metals (13) Priority Pollutant **Analysis Request** 0791 Received by (lab) (Company) (Printed), (Time) 0808/809 (Date) 8/28/196 Pesticides/PCBs Uques + Moore Hydrocarbons 610/8310 Polycyclic Aromatic BTX 602/8015 625/8270 (GC/MS) Base/Neutral/Acids 620 602/8020 Relinquished by Aromatic Volatiles (Company) 0108/109 (Printed) Halogenated Volatiles (Time)_ Volatile Organics 624/8240 (GC/MS) Matrix 3111 1451 Pope 28 Project Number: 2068/-089-163 Time \$248 3451 555 550 99 S day Special Instructions/Comments: Date Laboratory: ARI Project Manager: -Turn around time: Sampler's Signature: Sampler's Initials: アヘクランコ 00 20820 2000 S てのめる Sample ID とろっと とつから

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD

Sample No: MCSW3

Lab Sample ID: P957A

LIMS ID: 96-14165

Matrix: Wipe

QC Report No: P957-Dames & Moore

Project:

00681-089-163

Date Sampled:

08/28/96

Date Received:

08/28/96

Data Release Authorized:

Reported: 09/03/96

Date extracted: 08/29/96 Date analyzed: 08/30/96

Sample Amount: 1.00 Wipe

Final Ext Vol: 10 mL GPC Cleanup: No

Florisil Cleanup: No

Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	7.0	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 74.0% Tetrachlorometaxylene 61.0%

- Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the U given detection limit.
- В Found in associated method blank
- Indicates compound was not analyzed. NA
- Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration. but in the opinion of the analyst, confirmation was inadequate.

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD

Sample No: MCSW4

Lab Sample ID: P957B

LIMS ID: 96-14166

Matrix: Wipe

QC Report No: P957-Dames & Moore

Project:

00681-089-163

Date Sampled:

08/28/96

Date Received: 08/28/96

Data Release Authorized: /7
Reported: 09/03/96

Date extracted: 08/29/96
Date analyzed: 08/30/96
Sample Amount: 1.00 Wipe
Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No

Sulfur Cleanup: No Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor 1	1016	1.0	U
53469-21-9	Aroclor 1	1242	1.0	U
12672-29-6	Aroclor 1	1248	1.0	U
11097-69-1	Aroclor 1	1254	1.0	IJ
11096-82-5	Aroclor 1	L260	15	Ĭ

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 84.0% Tetrachlorometaxylene 64.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD

Sample No: MCSW5

Lab Sample ID: P957C

QC Report No: P957-Dames & Moore

LIMS ID: 96-14167

Project:

00681-089-163

Matrix: Wipe

Date Sampled: 08/28/96

Date Received: 08/28/96

Data Release Authorized:

Reported: 09/03/96

Date extracted: 08/29/96

GPC Cleanup: No Florisil Cleanup:

Date analyzed: 08/30/96

Sulfur Cleanup: No

Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	26	E

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 94.0% Tetrachlorometaxylene 66.0%

- Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- II Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD

Sample No: MCSW5

DILUTION

Lab Sample ID: P957CDIL

P957-Dames & Moore

LIMS ID: 96-14167

QC Report No:

Project:

00681-089-163

Matrix: Wipe

Date Sampled:

08/28/96

Data Release Authorized:

Date Received:

08/28/96

Reported: 09/03/96

Date extracted: 08/29/96

Date analyzed: 09/02/96

GPC Cleanup: No Florisil Cleanup: No

Sample Amount: 1.00 Wipe

Sulfur Cleanup: No

Final Ext Vol: 10 mL

Conc/Dilution Factor: 1:5

Reported in Total ug/Sample

CA	S Number	Analyte		Value	
12	674-11-2	Aroclor	1016	5.0	U
53	469-21-9	Aroclor	1242	5.0	U
12	672-29-6	Aroclor	1248	5.0	U
11	097-69-1	Aroclor	1254	5.0	U
11	096-82-5	Aroclor	1260	35	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 85.0% Tetrachlorometaxylene 95.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- Indicates compound was not analyzed. NA
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCSW6

Lab Sample ID: P957D

QC Report No: P957-Dames & Moore

LIMS ID: 96-14168

Project:

00681-089-163

Matrix: Wipe

Date Sampled:

08/28/96

Date Received:

Data Release Authorized:

08/28/96

Reported: 09/03/96

Date extracted: 08/29/96

GPC Cleanup: No

Florisil Cleanup: No

Date analyzed: 08/30/96 Sample Amount: 1.00 Wipe

Final Ext Vol: 10 mL

Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	10	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 78.0% Tetrachlorometaxylene 67.0%

- Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCSW7

Lab Sample ID: P957E LIMS ID: 96-14169

Matrix: Wipe

QC Report No: P957-Dames & Moore

Project:

00681-089-163

Date Sampled: 08/28/96 Date Received: 08/28/96

Data Release Authorized: Reported: 09/03/96

Date extracted: 08/29/96 Date analyzed: 08/30/96 Sample Amount: 1.00 Wipe Final Ext Vol:

10 mL

GPC Cleanup: No Florisil Cleanup: No Sulfur Cleanup: No Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	5.7	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 74.0% Tetrachlorometaxylene 62.0%

- Indicates an estimated value when that result is less than the J calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- II Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank В
- Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCSW8

Lab Sample ID: P957F

QC Report No: P957-Dames & Moore

LIMS ID: 96-14170 Matrix: Wipe

Project:

00681-089-163

Date Sampled:

08/28/96

Date Received: 08/28/96

Data Release Authorized:

Date extracted: 08/29/96

Date analyzed: 08/30/96

Reported:

09/03/96

GPC Cleanup: No Florisil Cleanup: No

Sulfur Cleanup: No

Sample Amount: 1.00 Wipe

Conc/Dilution Factor: 1:1

Final Ext Vol: 10 mL

Reported in Total ug/Sample

CAS Number	Analyte	Value
12674-11-2	Aroclor 1016	1.0 U
53469-21-9	Aroclor 1242	1.0·U
12672-29-6	Aroclor 1248	1.0 U
11097-69-1	Aroclor 1254	1.0 U
11096-82-5	Aroclor 1260	1.0 U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 72.0% Tetrachlorometaxylene 66.0%

- Indicates an estimated value when that result is less than the J calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. Y The analyte may be present at or below the listed concentration, but in the opinion of the analyst; confirmation was inadequate.

Sample No: MCSW9

Lab Sample ID: P957G

LIMS ID: 96-14171

Matrix: Wipe

QC Report No: P957-Dames & Moore

Project:

00681-089-163

Date Sampled: Date Received:

08/28/96 08/28/96

Data Release Authorized:

Reported: 09/03/96

Date extracted: 08/29/96 Date analyzed: 08/30/96 Sample Amount: 1.00 Wipe

Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No

Sulfur Cleanup: No Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	1.4	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 77.0% Tetrachlorometaxylene 65.0%

- Indicates an estimated value when that result is less than the J calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank B
- Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCSW10

Lab Sample ID: P957H

LIMS ID: 96-14172

Matrix: Wipe

QC Report No: P957-Dames & Moore

Project:

00681-089-163

Date Sampled:

08/28/96

Date Received:

08/28/96

Data Release Authorized:

Reported: 09/03/96

Date extracted: 08/29/96 Date analyzed: 08/31/96

Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No

Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte	Value
12674-11-2	Aroclor 101	6 1.0 U
53469-21-9	Aroclor 124	2 1.0 U
12672-29-6	Aroclor 124	8 1.0 U
11097-69-1	Aroclor 125	4 1.0 U
11096-82-5	Aroclor 126	0 1.6

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 72.0% Tetrachlorometaxylene 66.0%

- Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the U given detection limit.
- Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCSW11

Lab Sample ID: P957I

LIMS ID: 96-14173 Matrix: Wipe

QC Report No: P957-Dames & Moore

Project:

00681-089-163

Date Sampled: 08/28/96

Date Received: 08/28/96

Data Release Authorized: Reported: 09/03/96

Date extracted: 08/29/96

Date analyzed: 08/31/96 Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte	Value	
12674-11-2	Aroclor 1016	1.0 U	
53469-21-9	Aroclor 1242	1.0 U	
12672-29-6	Aroclor 1248	1.0 U	
11097-69-1	Aroclor 1254	1.0 U	
11096-82-5	Aroclor 1260	1.0 U	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 70.0% Tetrachlorometaxylene

- Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out. D
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCSW12

Lab Sample ID: P957J

Matrix: Wipe

LIMS ID: 96-14174

QC Report No: P957-Dames & Moore

Project:

00681-089-163

Date Sampled: Date Received: 08/28/96

08/28/96

Data Release Authorized:

Reported: 09/03/96

Date extracted: 08/29/96 Date analyzed: 08/31/96 Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	4.8	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 73.0% Tetrachlorometaxylene 56.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. Y The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCSWB1

Lab Sample ID: P957K

LIMS ID: 96-14175

Matrix: Wipe

QC Report No:

P957-Dames & Moore

Project:

00681-089-163

Date Sampled:

08/28/96

Date Received:

08/28/96

Data Release Authorized: Reported: 09/03/96

Date extracted: 08/29/96
Date analyzed: 08/31/96
Sample Amount: 1.00 Wipe
Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No Sulfur Cleanup: No Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor 1	.016	1.0	U
53469-21-9	Aroclor 1	242	1.0	
12672-29-6	Aroclor 1	248	1.0	U
11097-69-1	Aroclor 1	254	1.0	
11096-82-5	Aroclor 1	260	1.0	1000

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 72.0% Tetrachlorometaxylene 60.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector.
 Dilution Required
 S Indicates no value reported due to gatumption of the linear
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCNW4 MCCW4

Lab Sample ID: P957L

LIMS ID: 96-14176

Matrix: Wipe

QC Report No: P957-Dames & Moore

Project:

00681-089-163

Date Sampled:

08/28/96

Date Received: 08/28/96

Data Release Authorized: Reported: 09/03/96

Date extracted: 08/29/96 Date analyzed: 08/31/96 Sample Amount: 1.00 Wipe

Final Ext Vol: 10 mL GPC Cleanup: No

Florisil Cleanup: No Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte	¥1	Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	4.0	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 71.0% Tetrachlorometaxylene 66.0%

- Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- Indicates compound was not analyzed. NA
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCNW5 MCCW 5

Lab Sample ID: P957M

LIMS ID: 96-14177

Matrix: Wipe

QC Report No: P957-Dames & Moore

Project:

00681-089-163

Date Sampled: 08/28/96

Date Received: 08/28/96

Data Release Authorized: Reported: 09/03/96

Date extracted: 08/29/96 Date analyzed: 08/31/96 Sample Amount: 1.00 Wipe

Final Ext Vol:

GPC Cleanup: No Florisil Cleanup: No Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor 10	16	1.0	U
53469-21-9	Aroclor 12	42	1.0	U
12672-29-6	Aroclor 12	48	1.0	U
11097-69-1	Aroclor 12	54	1.0	U
11096-82-5	Aroclor 12	60	5.4	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 75.0% Tetrachlorometaxylene

- J Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank
- NA Indicates compound was not analyzed.
- Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

MENWS MCCW6 Sample No:

Lab Sample ID: P957N

LIMS ID: 96-14178

Matrix: Wipe

QC Report No: P957-Dames & Moore

Project:

00681-089-163

Date Sampled:

08/28/96

Date Received:

08/28/96

Data Release Authorized:

Reported: 09/03/96

Date extracted: 08/29/96 Date analyzed: 08/31/96

Sample Amount: 1.00 Wipe Final Ext Vol:

GPC Cleanup: No Florisil Cleanup: No Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	10	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 74.0% Tetrachlorometaxylene 59.0%

- Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the U given detection limit.
- Found in associated method blank B
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCNW7

Lab Sample ID: P9570

LIMS ID: 96-14179 Matrix: Wipe

QC Report No: P957-Dames & Moore

Project:

00681-089-163

Date Sampled: 08/28/96 Date Received: 08/28/96

Data Release Authorized:

Reported: 09/03/96

Date extracted: 08/29/96 Date analyzed: 08/31/96

Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

GPC Cleanup: No

Florisil Cleanup: No Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

Analyte		Value	
Aroclor	1016	1.0	U
Aroclor	1242	1.0	U
Aroclor	1248	1.0	U
Aroclor	1254	1.0	U
Aroclor	1260	25	E
	Aroclor Aroclor Aroclor	Analyte Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	Aroclor 1016 1.0 Aroclor 1242 1.0 Aroclor 1248 1.0 Aroclor 1254 1.0

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 79.0% Tetrachlorometaxylene 69.0%

- Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- II Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank В
- Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCNW7 MCCW7RE

DILUTION

Lab Sample ID: P9570DIL

QC Report No:

P957-Dames & Moore

LIMS ID: 96-14179 Matrix: Wipe

Project:

00681-089-163

Date Sampled:

08/28/96

Date Received: 08/28/96

Data Release Authorized:

Reported: 09/03/96

GPC Cleanup: No

Florisil Cleanup: No

Sulfur Cleanup: No

Date analyzed: 09/02/96 Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

Date extracted: 08/29/96

Conc/Dilution Factor: 1:5

Reported in Total ug/Sample

CAS Number	Analyte	-	Value	
12674-11-2	Aroclor	1016	5.0	U
53469-21-9	Aroclor	1242	5.0	U
12672-29-6	Aroclor	1248	5.0	U
11097-69-1	Aroclor	1254	5.0	U
11096-82-5	Aroclor	1260	32	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 55.0% Tetrachlorometaxylene 85.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank
- NA Indicates compound was not analyzed.
- Indicates no recovery due to interferences. NR
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCNW8 MCCW 8

Lab Sample ID: P957P

LIMS ID: 96-14180 Matrix: Wipe QC Report No: P957-Dames & Moore

Project:

00681-089-163

Date Sampled:

08/28/96

Date Received:

08/28/96

Data Release Authorized: Reported: 09/03/96

Date extracted: 08/29/96
Date analyzed: 08/31/96
Sample Amount: 1.00 Wipe
Final Ext Vol: 10 mL

GPC Cleanup: No
Florisil Cleanup: No
Sulfur Cleanup: No
Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte	Value
12674-11-2	Aroclor 1016	1.0 U
53469-21-9	Aroclor 1242	1.0 U
12672-29-6	Aroclor 1248	1.0 U
11097-69-1	Aroclor 1254	1.0 U
11096-82-5	Aroclor 1260	14

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 75.0% Tetrachlorometaxylene 62.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCNW9 MCCW9

Lab Sample ID: P957Q

LIMS ID: 96-14181

Matrix: Wipe

QC Report No: P957-Dames & Moore

Project:

00681-089-163

Date Sampled: 08/28/96

Date Received: 08/28/96

Data Release Authorized: Reported: 09/03/96

Date extracted: 08/29/96 Date analyzed: 08/31/96 Sample Amount: 1.00 Wipe

Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No

Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	3.8	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 72.0% Tetrachlorometaxylene 63.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector.
 Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: Method Blank

Lab Sample ID: P957MB

QC Report No: P957-Dames & Moore

LIMS ID: 96-14165 Matrix: Wipe

Project:

00681-089-163

Date Sampled: NA

Date Received:

Data Release Authorized:

Reported: 09/03/96

Date extracted: 08/29/96 Date analyzed: 08/30/96

Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

GPC Cleanup: No

Florisil Cleanup: No

Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	1.0	U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 76.0% Tetrachlorometaxylene

- Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- Indicates no value reported due to saturation of the detector. S
- Indicates the surrogate was diluted out. D
- Indicates compound was analyzed for, but not detected at the U given detection limit.
- Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Lab Sample ID: P957SB

LIMS ID: 96-14165

Matrix: Wipe

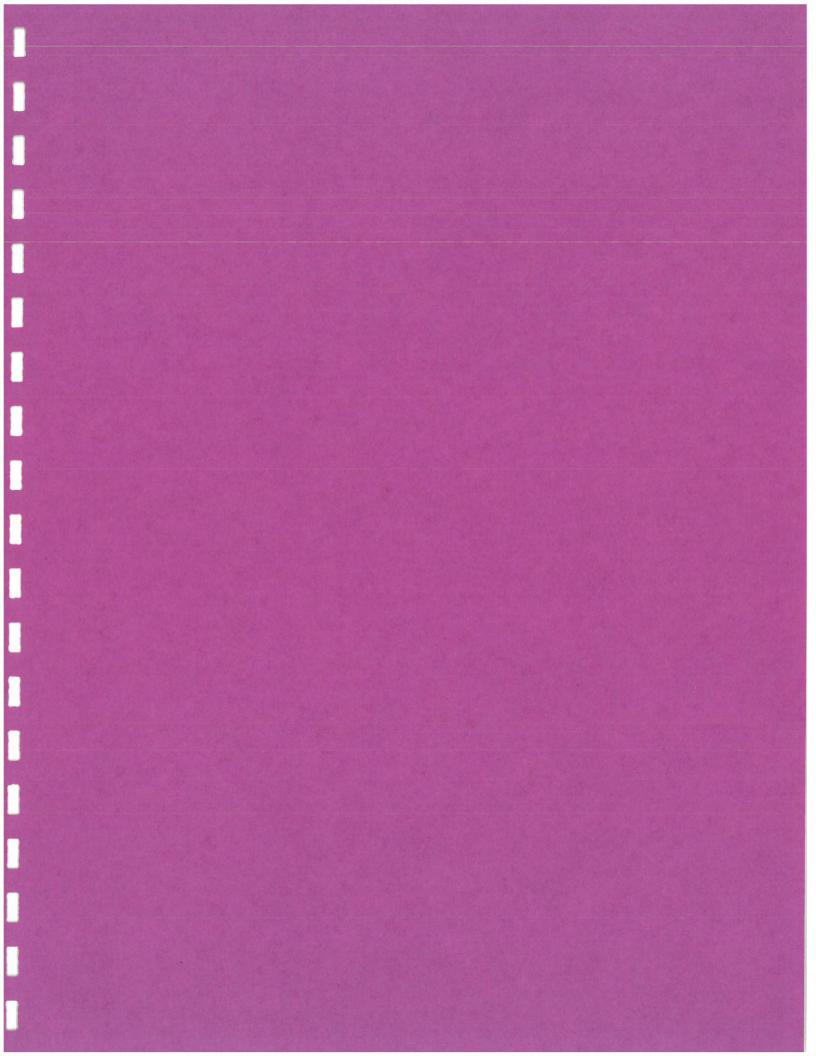
Data Release Authorized: High Reported: 09/03/96

QC Report No: P957-Dames & Moore

Project:

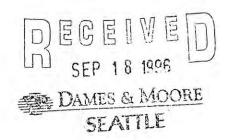
00681-089-163

LABORATORY CONTROL SAMPLE RECOVERY


Date extracted: 08/29/96

CONSTITUENT	SPIKE VALUE	SPIKE AMT	% RECOVERY
LABORATORY CONTROL SAMPLE			
Aroclor 1242	6.05	10.0	60.5%

Aroclor Surrogate Recoveries


Decachlorobiphenyl 75.0% Tetrachlorometaxylene 69.0%

Values reported in ug/Sample

13 September 1996

Lee Hatcher Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: 00681-089-163, U of W; ARI Job #: 0054

Dear Mr. Hatcher,

Please find enclosed the original chain-of-custody (COC) record and results for samples from the above referenced project. Two wipe samples were received in good condition on 9/9/96. There were no discrepancies between the COC and sample labels, and they were logged into the laboratory without incident of note.

Analyses for PCBs were performed by EPA method 8081. They were routine, and these results were faxed to you earlier today. A Laboratory Control Sample was extracted and analyzed with the samples, and a recovery report is included to provide QC documentation for the project.

A copy of this package will be kept on file should you need additional information at a future date. If you have questions or need additional documentation, please call me any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemeeller Project Manager

206-340-2866, ext. 117

Enclosures cc: file #Q054

DAMES & MOORE

1000

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

E28h/-228h)

Chain of Custody

Number of Containers Sample Receipt Rec'd good condition/cold: Total no. of containers: Chain of custody seals: Conforms to record: Instructions Comments/ Lab number: (Date 9-9-96 (8) (Printed) Kit GIARDAIEK **EP TOX Metals** Priority Pollutant Metals (13) (Sig) Kit Gardner Analysis Request (Company) AKI Received by (lab): (Time) 0813 Pesticides/PCBs/808/808 (Date) 7/9/8 (Company) DAMES + MORE Hydrocarbons 610/8310 Polycyclic Aromatic BTX 602/8015 (Printed) STEMEN 625/8270 (GC/MS) Base/Neutral/Acids 2180 Relinquished by 602/8020 Aromatic Volatiles 0108/109 Halogenated Volatiles (Sig) = (Time) Volatile Organics 624/8240 (GC/MS) 575 912 2346 Role -089-165 Time Matrix Tata Ler 1746/2344 Turn around time: S dax Date Project Number: 00681 Special Instructions/Comments: Project Manager: -Laboratory: -Sampler's Initials: -Sampler's Signature: 2 MCCE 10 MCCEIO Sample ID

Sample No: MCCW101

Lab Sample ID: Q054A

LIMS ID: 96-14822 Matrix: Wipe QC Report No: Q054-Dames & Moore

Project:

00681-089-163

Date Sampled: 0: Date Received: 0:

09/07/96

Data Release Authorized: Reported: 09/13/96

Date extracted: 09/12/96
Date analyzed: 09/12/96

Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No Acid Cleanup: Yes

Sulfur Cleanup: No Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	2.9	

sample taken is switch gear @ Mclarty Centrul A

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 78.0% Tetrachlorometaxylene 72.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector.
 Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCCW102

Lab Sample ID: Q054B

LIMS ID: 96-14823

Matrix: Wipe

QC Report No: Q054-Dames & Moore

Project:

00681-089-163

Date Sampled: 09/07/96
Date Received: 09/09/96

Data Release Authorized: Reported: 09/13/96

Date extracted: 09/12/96 Date analyzed: 09/12/96

Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

GPC Cleanup: No
Florisil Cleanup: No
Acid Cleanup: Yes
Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte	Value	Sample takes
12674-11-2	Aroclor 1016	1.0 U	in switch gear
53469-21-9	Aroclor 1242	1.0 U	a McCanty Centra
12672-29-6	Aroclor 1248	1.0 U	
11097-69-1	Aroclor 1254	1.0 U	
11096-82-5	Aroclor 1260	12	H

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 67.0% Tetrachlorometaxylene 58.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector.
 Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: Method Blank

Lab Sample ID: Q054MB

LIMS ID: 96-14822

Matrix: Wipe

QC Report No: Q054-Dames & Moore

Project:

00681-089-163

Date Sampled: NA Date Received: NA

Data Release Authorized:

Reported: 09/13/96

Date extracted: 09/12/96 Date analyzed: 09/12/96

Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No

Acid Cleanup: Yes Sulfur Cleanup: No Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor 1	016	1.0	U
53469-21-9	Aroclor 1	242	1.0	U
12672-29-6	Aroclor 1	248	1.0	U
11097-69-1	Aroclor 1	254	1.0	U
11096-82-5	Aroclor 1	260	1.0	U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 74.0% Tetrachlorometaxylene 75.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector.
 Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Lab Sample ID: Q054SB

LIMS ID: 96-14822

Matrix: Wipe

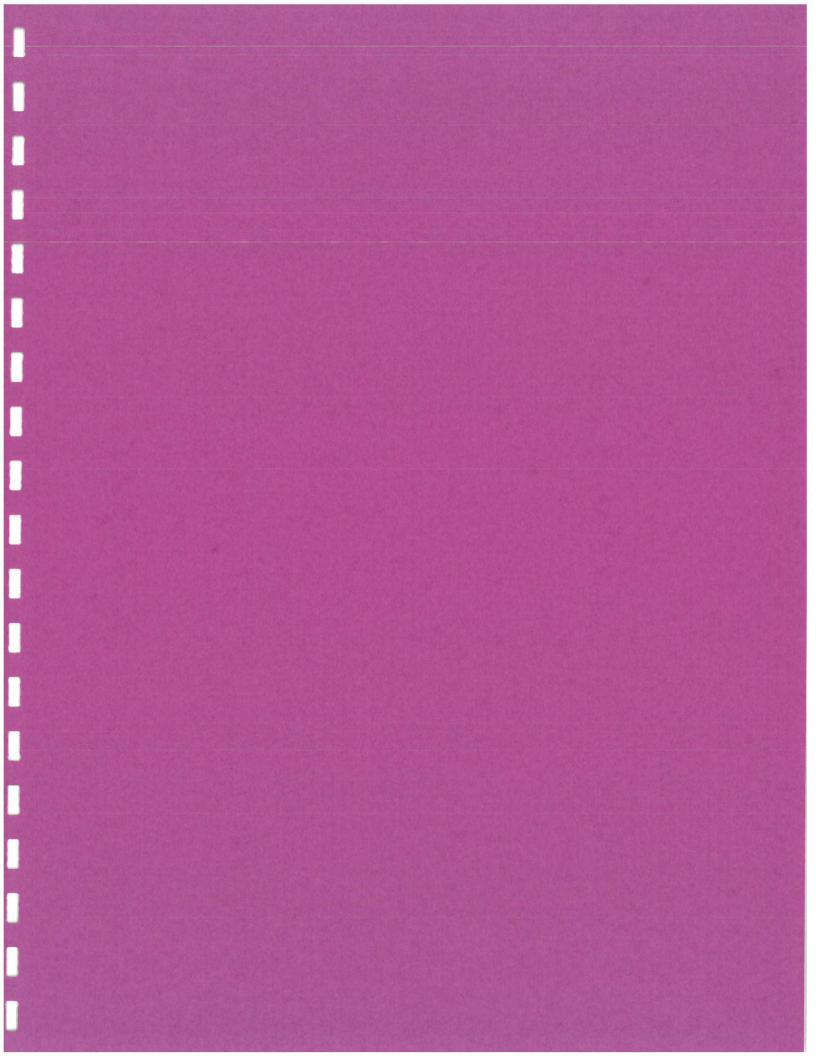
QC Report No: Q054-Dames & Moore

Project:

00681-089-163

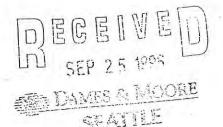
Data Release Authorized: Reported: 09/13/96

LABORATORY CONTROL SAMPLE RECOVERY


Date extracted: 09/12/96

CONSTITUENT	SPIKE VALUE	SPIKE AMT	% RECOVERY
LABORATORY CONTROL SAMPLE			
Aroclor 1242	6.63	10.0	66.3%

Aroclor Surrogate Recoveries


Decachlorobiphenyl 76.0% Tetrachlorometaxylene 75.0%

Values reported in ug/Sample

24 September 1996

Lee Hatcher Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: ARI Job #: Q151

00681-089-163, U of W;

Dear Mr. Hatcher,

Please find enclosed the original chain-of-custody (COC) record and results for samples from the above referenced project. Fifteen wipe samples were received in good condition on 9/16/96. There were no discrepancies between the COC and sample labels, and they were logged into the laboratory without incident of note.

Analyses for PCBs were performed by EPA method 8081. They were routine, and initial results were faxed to you in preliminary form on 8/20, and the dilution results for four samples were faxed to you yesterday. Both sets of results for these four samples are included. A Laboratory Control Sample was extracted and analyzed with the samples, and a recovery report is included to provide QC documentation for the project.

A copy of this package will be kept on file should you need additional information at a future date. If you have questions or need additional documentation, please call me any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Manager

206-340-2866, ext. 117

Enclosures cc: file #Q151

Chain of Custody

ō

DAMES & MOORE

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

13.7 Number of Containers MILL 9-11-96 Sample Receipt Den buttle Total no. of containers: Chain of custody seals: Rec'd good condition/cold; Conforms to record: COC 10's MIF Inch All Comples Instructions Comments/ TOON MILL DUP h.N.P DUMBERS 410 MCNi Lab number (8) (Date) EP TOX Metals Metals (13) Priority Pollutant **Analysis Request** (Time) 5= 55 p m (Date) 4/16 pt. (Time) 9/16/9/6 Received by (lab) (Company)+ (Sig) 7/4 (Printed)_ 0808/809 (Printed) JOSEWINE YOUR GOD Pesticides/PCBs University of Washington (Sig) Fromme your Gun (Company) Dames & weare Hydrocarbons 610/8310 Polycyclic Aromatic BTX 602/8015 625/8270 (GC/MS) Base/Neutral/Acids MER Sample Relinquished by: 602/8020 Aromatic Volatiles 7 Halogenated Volatiles 601/8010 es4/8540 (ec/WS) Volatile Organics 18:00 9/10/12/1530 10/02 Time | Matrix 9/0/Pel 1526 Wips 9/16/2 15 20 Wife grame bronkful Project Manager: Los the telun 9/16/16 1523 9/16/16/25 801 MG94 1640 4646 1700 9/1696 1628 Phone 1705 049190016 9/49/1625 Phopo 1655 MCB 1026-DUP/96914 1631 9/16/96/16:10 Tum around time: 3 class Phopp ブゴの Date Special Instructions/Comments: Medioz-Dup Laboratory: Sampler's Initials: Project Number: Sampler's Signature: MCB 102C MUSIOSC MCBIOGC MCB 107C MCB 1050 MCB103C MCBIOHC Sample ID Neg told MCN 103 MCN 104 MCNIOZ Med 131 Blark

Sample No: MCN101

Lab Sample ID: Q151A

LIMS ID: 96-15466 Matrix: Wipe

QC Report No: Q151-Dames & Moore

Project:

Date Sampled: 09/16/96

Date Received: 09/16/96

Data Release Authorized: Reported: 09/23/96

Date extracted: 09/18/96 Date analyzed: 09/19/96

Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No

Acid Cleanup: Sulfur Cleanup: No Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor 1	016	1.0	U
53469-21-9	Aroclor 1:	242	1.0	U
12672-29-6	Aroclor 13	248	1.0	U
11097-69-1	Aroclor 12	254	1.0	U
11096-82-5	Aroclor 12	260	2.3	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl	64.0%
Tetrachlorometaxylene	63 0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCN102

Lab Sample ID: Q151B

LIMS ID: 96-15467

Matrix: Wipe

QC Report No: Q151-Dames & Moore

Project:

Date Sampled:

09/16/96 Date Received: 09/16/96

Data Release Authorized: Reported: 09/23/96

Date extracted: 09/18/96 Date analyzed: 09/19/96

Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No

Acid Cleanup: Yes Sulfur Cleanup: No Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	3.7	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl	67.0%
Tetrachlorometaxylene	66.0%

- Indicates an estimated value when that result is less than the J calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank B
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCN102-DUP

Lab Sample ID: Q151C LIMS ID: 96-15468

QC Report No: Q151-Dames & Moore

Project:

Matrix: Wipe

Date Sampled: Date Received: 09/16/96

09/16/96

Data Release Authorized:

Date analyzed: 09/20/96

Reported: 09/23/96

Date extracted: 09/18/96

GPC Cleanup: No

Florisil Cleanup: No

Acid Cleanup: Yes

Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte	Value
12674-11-2	Aroclor 1016	1.0 0
53469-21-9	Aroclor 1242	1.0 0
12672-29-6	Aroclor 1248	1.0 U
11097-69-1	Aroclor 1254	1.0 U
11096-82-5	Aroclor 1260	4.7

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 66.0% Tetrachlorometaxylene 65.0%

- Indicates an estimated value when that result is less than the J calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the U given detection limit.
- В Found in associated method blank
- NA Indicates compound was not analyzed.
- Indicates no recovery due to interferences. NR
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCN103

Lab Sample ID: Q151D

LIMS ID: 96-15469

Matrix: Wipe

QC Report No: Q151-Dames & Moore

Project:

Date Sampled: 09/16/96 Date Received: 09/16/96

Data Release Authorized: Reported: 09/23/96

Date extracted: 09/18/96 Date analyzed: 09/20/96

Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL GPC Cleanup: No Florisil Cleanup: No Acid Cleanup: Yes

Sulfur Cleanup: No Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte	_	Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	1.0	U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl	66.0%
Tetrachlorometaxylene	66.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector.
 Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences.

 The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCN104

Lab Sample ID: Q151E

LIMS ID: 96-15470 Matrix: Wipe QC Report No: Q151-Dames & Moore

Project:

Date Sampled: 09/16/96 Date Received: 09/16/96

Data Release Authorized: Reported: 09/23/96

Date extracted: 09/18/96 Date analyzed: 09/20/96

Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No

Acid Cleanup: Yes Sulfur Cleanup: No Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor 1	016	1.0	U
53469-21-9	Aroclor 1:	242	1.0	U
12672-29-6	Aroclor 1:	248	1.0	U
11097-69-1	Aroclor 1	254	1.0	U
11096-82-5	Aroclor 12	260	1.3	170

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 64.0% Tetrachlorometaxylene 65.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: Blank

Lab Sample ID: Q151N

LIMS ID: 96-15480

Matrix: Wipe

QC Report No: Q151-Dames & Moore

Project:

Date Sampled: 09/16/96 Date Received: 09/16/96

Data Release Authorized: Reported: 09/23/96

Date extracted: 09/18/96
Date analyzed: 09/20/96

Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

GPC Cleanup: No

Florisil Cleanup: No
Acid Cleanup: Yes
Sulfur Cleanup: No
Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte	Value
12674-11-2	Aroclor 1016	1.0 U
53469-21-9	Aroclor 1242	1.0 U
12672-29-6	Aroclor 1248	1.0 U
11097-69-1	Aroclor 1254	1.0 U
11096-82-5	Aroclor 1260	1.0 U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 65.0% Tetrachlorometaxylene 65.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector.
 Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: Method Blank

Lab Sample ID: Q151MB

QC Report No: Q151-Dames & Moore

LIMS ID: 96-15466

Project:

Matrix: Wipe

Date Sampled: NA

Data Release Authorized: Reported: 09/23/96

Date Received:

Date extracted: 09/18/96

GPC Cleanup: No

Florisil Cleanup: No

Date analyzed: 09/19/96

Acid Cleanup: Yes

Sample Amount: 1.00 Wipe

Sulfur Cleanup: No

Final Ext Vol: 10 mL Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte	4	Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	1.0	U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 76.0% Tetrachlorometaxylene 76.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. Dilution Required
- Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank B
- Indicates compound was not analyzed. NA
- Indicates no recovery due to interferences. NR
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Lab Sample ID: Q151SB

LIMS ID: 96-15466

Matrix: Wipe

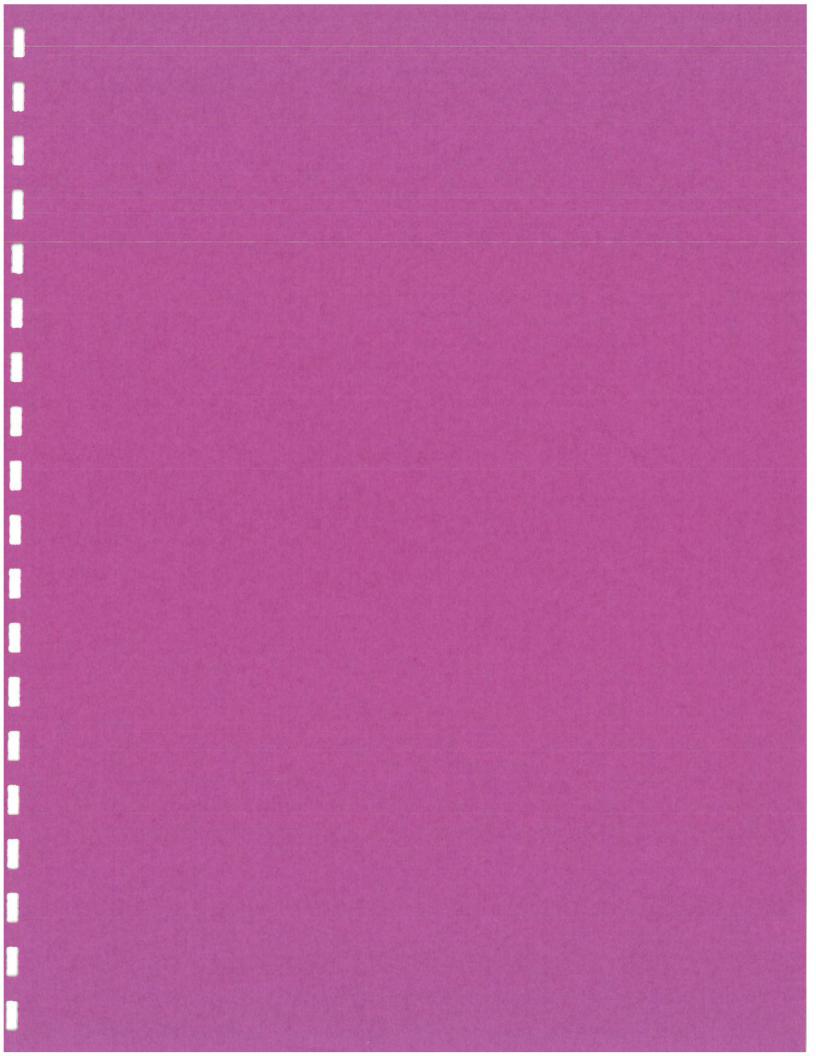
Data Release Authorized:

Reported: 09/23/96

QC Report No: Q151-Dames & Moore

Project:

LABORATORY CONTROL SAMPLE RECOVERY


Date extracted: 09/18/96

CONSTITUENT	SPIKE VALUE	SPIKE AMT	% RECOVERY
LABORATORY CONTROL SAMPLE			
Aroclor 1242	7.19	10.0	71.9%

Aroclor Surrogate Recoveries

Decachlorobiphenyl 76.0% Tetrachlorometaxylene 76.0%

Values reported in ug/Sample

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

TRANSMITTAL MEMORANDUM

DATE: September 25, 1996

TO:

Steve Hitch

Dames & Moore

PROJECT:

00681-068-163

REPORT NUMBER: 59684

Enclosed are the test results for four samples received at Sound Analytical Services on September 24, 1996.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (206) 922-2310.

Sincerely,

Project Manager

DJP:tm

DAMES & MOORE

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

Chain of Custody

Number of Containers Sample Receipt Total no. of containers: Chain of custody seals: Rec'd good condition/cold: Conforms to record: Comments/ Instructions 1 T8955 Lab number: (Date) (1)4/19/ (8) **EP TOX Metals** Metals (13) Priority Pollutant **Analysis Request** (Company) (Time) / (Time) Received by (lab) (Printed) DDA (Sig) Well Pesticides/PCBs 608/8080 HUCH Hydrocarbons 610/8310 Polycyclic Aromatic (Date) BTX 602/8015 625/8270 (GC/MS) Base/Neutral/Acids Relinquished by: Aromatic Volatiles (Company) 0108/109 (Printed) _ Halogenated Volatiles (Sig) (Time). Volatile Organica 624/8240 (GC/MS) Matrix 24 HR WED RUSH FAT WED 10686 068-163 Time 509 209 173411600 3 Date Special Instructions/Comments: 00 Tum around time: 24 Project Number: ∠ Project Manager: △ Laboratory: -Sampler's Initials: -Sampler's Signature: Sample ID MCCIOG MCC 102 011

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:

Date Analyzed:

% Solids

Dames & Moore MCC101 59684-01 9/24/96 9/24/96 9/24/96

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	90		50	150
Decachlorobiphenyl	94		50	150

	Result		
Analyte	(ug - total)	PQL	Flags
Aroclor 1016	ND	0.5	-
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260		15 0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:

% Solids

Dames & Moore MCC102 59684-02 9/24/96 9/24/96 9/24/96

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	90		50	150
Decachlorobiphenyl	95		50	150

	Result		
Analyte	(ug - total)	PQL	Flags
Aroclor 1016	ND	0.5	3 2 2 2
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	12	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Client Name

Client ID:

Lab ID:

Date Received:

Date Prepared:

Date Analyzed:

% Solids

Dames & Moore

MCC103

59684-03

9/24/96

9/24/96

9/24/96

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	94		50	150
Decachlorobiphenyl	105		50	150

	Result		
Analyte	(ug - total)	PQL	Flags
Aroclor 1016	ND	0.5	
Aroclor 1221	ND :	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	22	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	
Alociol 1268	ND	0.5	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:

Dames & Moore MCC104 59684-04 9/24/96 9/24/96 9/24/96

Date Analyzed: % Solids

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	95		50	150
Decachlorobiphenyl	103		50	150

	Result		
Analyte	(ug - total)	PQL	Flags
Aroclor 1016	ND	0.5	
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	26	0.5	-
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Lab ID:

Method Blank - PCB742

Date Received: Date Prepared:

9/24/96 9/24/96

Date Analyzed: % Solids

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	100		50	150
Decachlorobiphenyl	100		50	150

	Result		
Analyte	(ug - total)	PQL	Flags
Aroclor 1016	ND	0.5	
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	ND	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Blank Spike/Blank Spike Duplicate Report

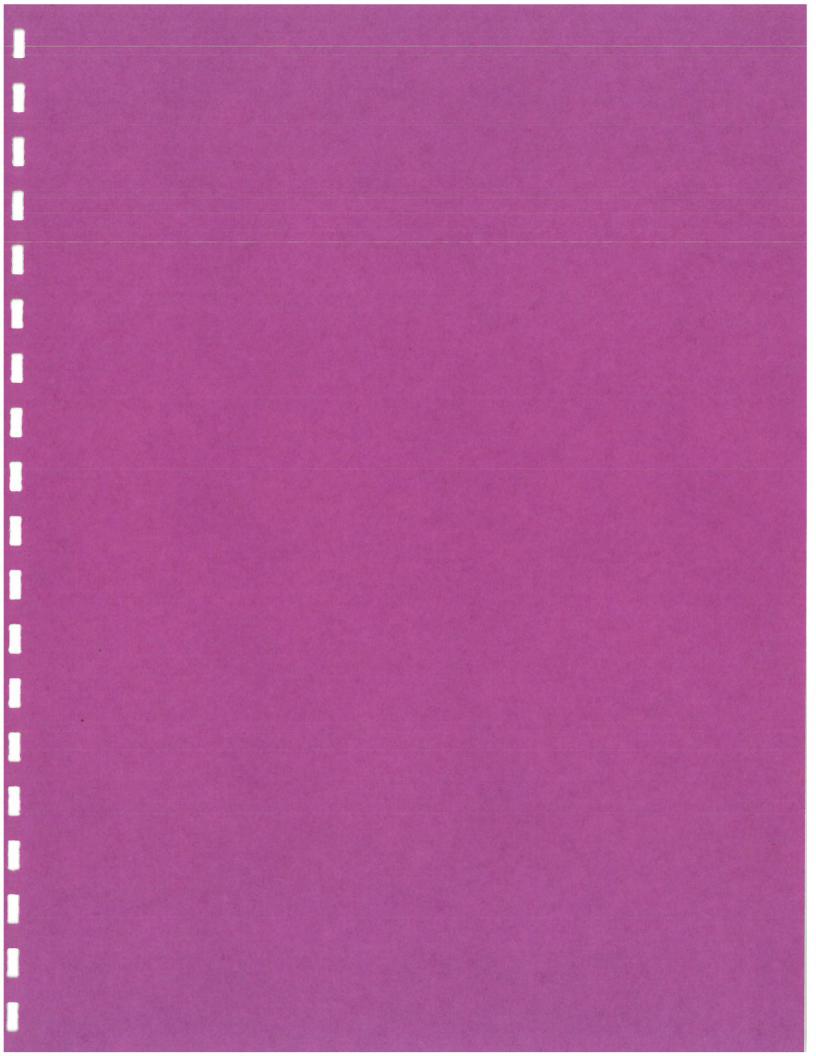
Lab ID: Date Prepared: Date Analyzed: QC Batch ID: PCB742 9/24/96 9/24/96 PCB742

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(ug - total)	(ug - total)	(ug - total)	% Rec.	(ug - total)	% Rec.	RPD	Flag
Aroclor 1260	0	5	5.6	112	5.35	107	4.6	

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 • TELEPHONE 206-922-2310 • FAX 206-922-5047

DATA QUALIFIERS AND ABBREVIATIONS

B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank). B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank). C: Additional confirmation performed. D: The reported result for this analyte is calculated based on a secondary dilution factor. E: The concentration of this analyte exceeded the instrument calibration range. J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity. MCL: Maximum Contaminant Level MDL: Method Detection Limit N: See analytical narrative. Not Detected ND: PQL: Practical Quantitation Limit X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be X2: Contaminant does not appear to be "typical" product. Further testing is suggested for identification. X3: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended. X4: RPD for duplicates outside advisory QC limits. Sample was re-analyzed with similar results. X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit. X5: Matrix spike was diluted out during analysis. X6: Recovery of matrix spike was outside advisory QC limits. Sample was re-analyzed with similar results. X7: Recovery of matrix spike outside advisory QC limits. Matrix interference is indicated by blank spike recovery data.


Recovery and/or RPD values for MS/MSD outside advisory QC limits due to high contaminant levels.

X9: Surrogate recovery outside advisory QC limits due to matrix composition.

Surrogate was diluted out during analysis.

X7a:

X8:

ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

TRANSMITTAL MEMORANDUM

DATE: September 26, 1996

TO:

Lee Hatcher

Dames & Moore

PROJECT:

00681-089-163

REPORT NUMBER:

59762

Enclosed are the test results for two samples received at Sound Analytical Services on September 26, 1996.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (206) 922-2310.

Sincerely,

Darla Powell

Project Manager

DP:tm

DAMES & MOORE

Chain of Custody

ot /

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

Number of Containers Sample Receipt Total no. of containers: Chain of custody seals: Rec'd good condition/cold: Conforms to record: Instructions Comments/ Lab number: (Date) Left (8) **EP TOX Metals** Metals (13) Priority Pollutant **Analysis Request** Received by (lab): 752) (Company) (Printed) (Time)_ (Sig)_ Pesticides (PCBs) 50000-(Date) 7/26/16 HIJCH (Company) DAMES + MCORE Hydrocarbons 610/8310 Polycyclic Aromatic BTX 602/8015 (Printed) SiE PHEへ 625/8270 (GC/MS) Base/Neutral/Acids Relinquished by: Aromatic Volatiles 0108/109 Halogenated Volatiles (Sig) (Time)_ Volatile Organics 624/8240 (GC/MS) Matrix LUIPE Project Number: OO631, 039, 167 Project Manager: Lee Hareha CALL LEE HAJCHER Time P452/1 24 HR Laboratory: Source Special Instructions/Comments: Date FAX RESULTS 7440-8 Turn around time: -Sampler's Initials: Sampler's Signature: 202 MCC 201 Sample ID HUND 7 NI

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:

% Solids

Dames & Moore MCC201 59762-01 9/26/96 9/26/96

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	129		50	150
Decachlorobiphenyl	106		50	150

	Result		
Analyte	(ug - total)	PQL	Flags
Aroclor 1016	ND	0.5	37.5
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	3.3	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids

Dames & Moore MCC202 59762-02 9/26/96 9/26/96 9/26/96

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	130		50	150
Decachlorobiphenyl	104		50	150

	Result		
Analyte	(ug - total)	PQL	Flags
Aroclor 1016	ND	0.5	232-0
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	1.5	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND.	0.5	

Lab ID:

Method Blank - PCB744

Date Received:

Date Prepared:

Date Analyzed: % Solids 9/26/96 9/26/96

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	101		50	150
Decachlorobiphenyl	101		50	150

	Result		
Analyte	(ug - total)	PQL	Flags
Aroclor 1016	ND	0.5	-
Aroclor 1221	ND .	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND .	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	ND	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Blank Spike/Blank Spike Duplicate Report

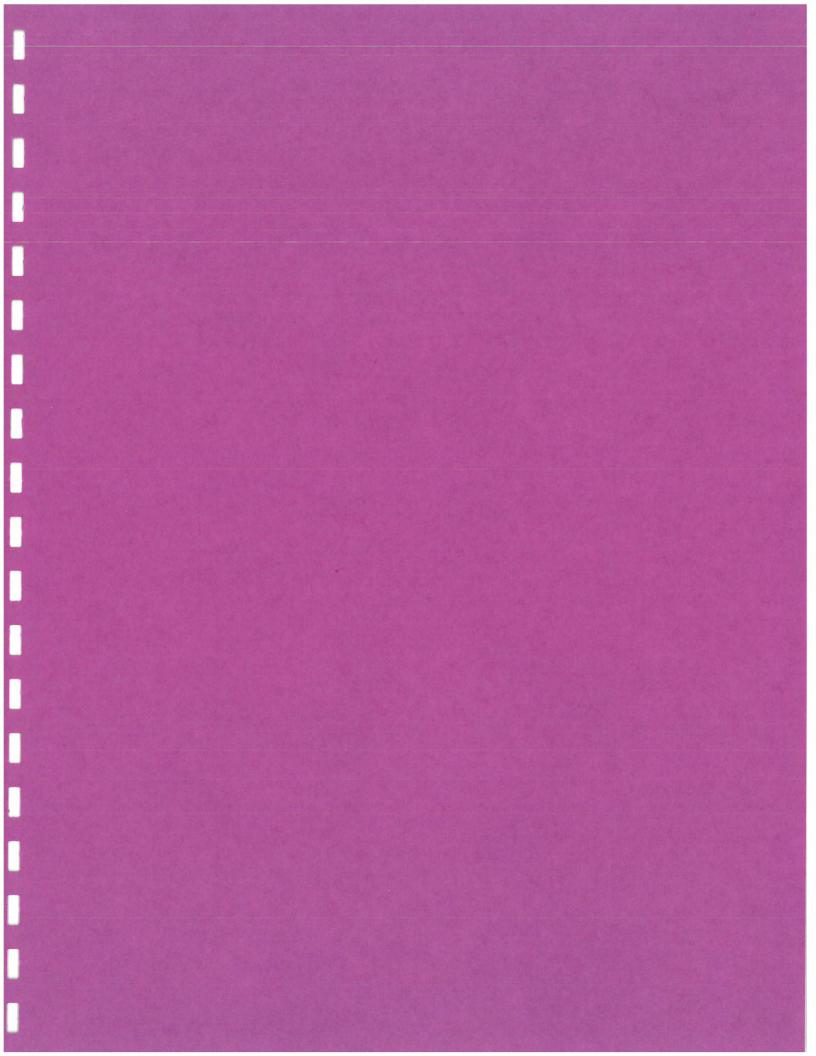
Lab ID: Date Prepared: Date Analyzed:

QC Batch ID:

PCB744 9/26/96 9/26/96 PCB744

PCBs by USEPA Method 8080

Blank Spike BS BSD Result **Amount** Result BS Result **BSD Compound Name** (ug - total) (ug - total) (ug - total) % Rec. (ug - total) % Rec. RPD Flag Aroclor 1260 0 5 5.2 104 5.25 105 0.96


4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 • TELEPHONE 206-922-2310 • FAX 206-922-5047

DATA QUALIFIERS AND ABBREVIATIONS

B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank). B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank). C: Additional confirmation performed. D: The reported result for this analyte is calculated based on a secondary dilution factor. E: The concentration of this analyte exceeded the instrument calibration range. J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity. MCL: Maximum Contaminant Level MDL: Method Detection Limit N: See analytical narrative. ND: Not Detected PQL: Practical Quantitation Limit X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be X2: Contaminant does not appear to be "typical" product. Further testing is suggested for identification. Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is X3: recommended. X4: RPD for duplicates outside advisory QC limits. Sample was re-analyzed with similar results. X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit X5: Matrix spike was diluted out during analysis. X6: Recovery of matrix spike was outside advisory QC limits. Sample was re-analyzed with similar results. X7: Recovery of matrix spike outside advisory QC limits. Matrix interference is indicated by blank spike recovery data. X7a: Recovery and/or RPD values for MS/MSD outside advisory QC limits due to high contaminant levels. X8: Surrogate was diluted out during analysis.

Surrogate recovery outside advisory QC limits due to matrix composition.

X9:

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

TRANSMITTAL MEMORANDUM

DATE: September 30, 1996

TO:

Lee Hatcher Dames & Moore

PROJECT: 0068

00681-089-163

REPORT NUMBER: 59790

Enclosed are the test results for four samples received at Sound Analytical Services on September 26, 1996.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (206) 922-2310.

Sincerely,

Darla J Powell Project Manager

DJP:tm

DAMES & MOORE

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

Chain of Custody

Date 9 / 2/1 1/2 Page 1

Number of Containers Sample Receipt Rec'd good condition/cold: Total no. of containers: Chain of custody seals: Conforms to record: Instructions Comments/ (Date) $\frac{9/2u/S}{c}$ Lab number: (8) **EP TOX Metals** Metals (13) Priority Pollutant **Analysis Request** (Printed) Man M (Company) Received by (lab) (Time) (Sig) Pesticides/PCBs 608/8080 X X X (Date) 7/24 Hydrocarbons 610/8310 MAKKE Polycyclic Aromatic BTX 602/8015 JAMES! 625/8270 (GC/MS) Base/Neutal/Acids 20 602/8020 Relinquished by: Aromatic Volatiles 12 (Company) Halogenated Volatiles 601/8010 (Printed)_ (Time) (Sig) Volatile Organics 624/8240 (GC/MS) Matrix Time 1210 12 14 1216 Alacha 19 1/20/1 Special Instructions/Comments: Date 9/26 Project Number: -Project Manager: -Turn around time: -Laboratory: -Sampler's Signature: ∠ Sampler's Initials: 1-1 MI 201 Sample ID MI

1//

Client Name Client ID:

Lab ID:

Date Received: Date Prepared:

Date Analyzed: % Solids Dames & Moore

MCC 301 59790-01

9/26/96

9/27/96

9/27/96

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	96		50	150
Decachlorobiphenyl	111		50	150

	Result		
Analyte	(ug - total)	PQL	Flags
Aroclor 1016	ND	0.5	2.00
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	23	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Client Name

Client ID: Lab ID:

Date Received:

Date Prepared:

Date Analyzed: % Solids

Dames & Moore

MCC 302

59790-02

9/26/96

9/27/96

9/27/96

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	100		50	150
Decachlorobiphenyl	101		50	150

	Result			
Analyte	(ug - total)	PQL	1	Flags
Aroclor 1016	ND	0.5		
Aroclor 1221	ND	0.5		
Aroclor 1232	ND	0.5		
Aroclor 1242	ND	0.5		
Aroclor 1248	ND	0.5		
Aroclor 1254	ND	0.5		-
Aroclor 1260	9.6	0.5		
Aroclor 1262	ND	0.5		
Aroclor 1268	ND	0.5		

Client Name

Client ID:

Lab ID: Date Received:

Date Prepared: Date Analyzed:

% Solids

Dames & Moore

MCC 303

59790-03

9/26/96

9/27/96

9/27/96

UILII

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	103		50	150
Decachlorobiphenyl	119		50	150

	Result		
Analyte	(ug - total)	PQL	Flags
Aroclor 1016	ND	0.5	
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	15	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
% Solids

Dames & Moore MCC 304 59790-04 9/26/96 9/27/96 9/27/96

			Recove	ry Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	2	X8	50	150
Decachlorobiphenyl	-	X8	50	150

	Result		
Analyte	(ug - total)	PQL	Flags
Aroclor 1016	ND	2.5	
Aroclor 1221	ND	2.5	
Aroclor 1232	ND	2.5	
Aroclor 1242	ND	2.5	
Aroclor 1248	ND	2.5	
Aroclor 1254	ND	2.5	
Aroclor 1260	43	2.5	
Aroclor 1262	ND	2.5	
Aroclor 1268	ND	2.5	

Lab ID:

Date Received:

Date Prepared:

Date Analyzed: % Solids Method Blank - PCB746

9/27/96

9/27/96

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
TCMX	87		50	150
Decachlorobiphenyl	95		50	150

	Result		
Analyte	(ug - total)	PQL	Flags
Aroclor 1016	ND	0.5	
Aroclor 1221	ND	0.5	
Aroclor 1232	ND	0.5	-
Aroclor 1242	ND	0.5	
Aroclor 1248	ND	0.5	
Aroclor 1254	ND	0.5	
Aroclor 1260	ND	0.5	
Aroclor 1262	ND	0.5	
Aroclor 1268	ND	0.5	

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared:

Date Analyzed: QC Batch ID: PCB746

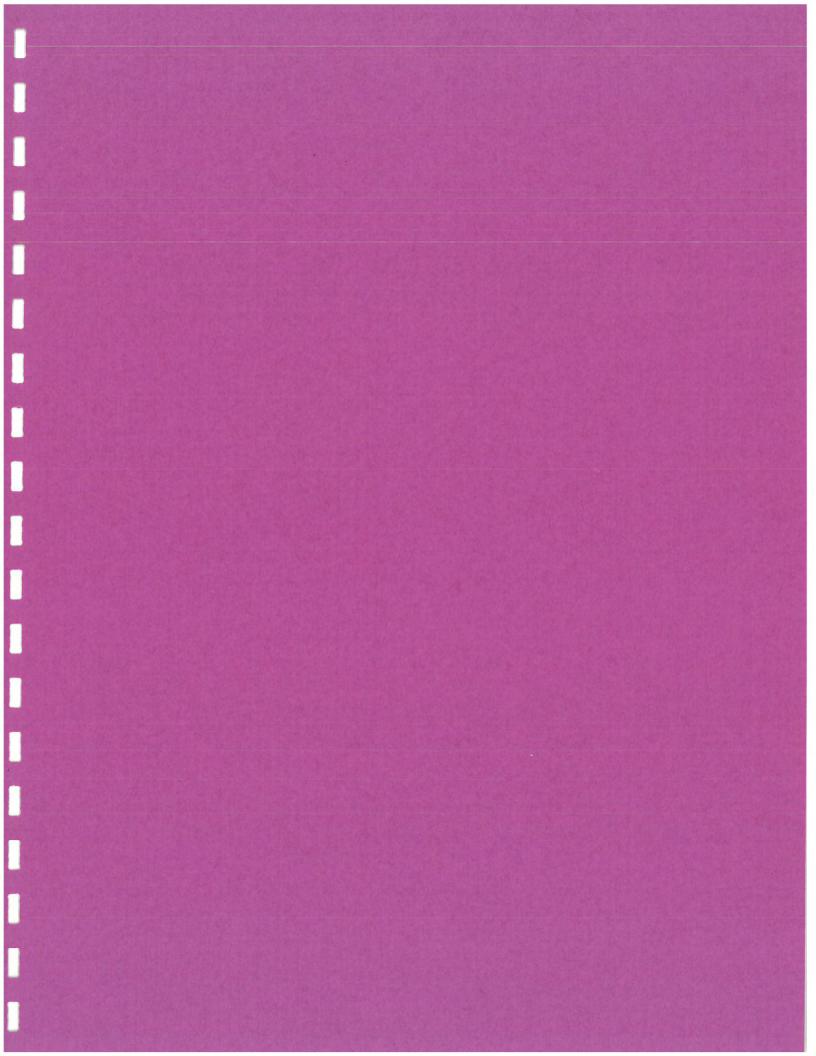
9/27/96 9/27/96

PCB746

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(ug - total)	(ug - total)	(ug - total)	% Rec.	(ug - total)	% Rec.	RPD	Flag
Aroclor 1260	0	5	5.3	106	5.25	105	0.95	

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 • TELEPHONE 206-922-2310 • FAX 206-922-5047

DATA QUALIFIERS AND ABBREVIATIONS


B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank). B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank). C: Additional confirmation performed. D: The reported result for this analyte is calculated based on a secondary dilution factor. E: The concentration of this analyte exceeded the instrument calibration range. J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity. MCL: Maximum Contaminant Level MDL: Method Detection Limit N: See analytical narrative. ND: Not Detected PQL: Practical Quantitation Limit X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be X2: Contaminant does not appear to be "typical" product. Further testing is suggested for identification. X3: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended. X4: RPD for duplicates outside advisory QC limits. Sample was re-analyzed with similar results. X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit. X5: Matrix spike was diluted out during analysis. X6: Recovery of matrix spike was outside advisory QC limits. Sample was re-analyzed with similar results. X7: Recovery of matrix spike outside advisory QC limits. Matrix interference is indicated by blank spike recovery data. X7a: Recovery and/or RPD values for MS/MSD outside advisory QC limits due to high contaminant levels. X8:

Surrogate was diluted out during analysis.

Surrogate recovery outside advisory QC limits due to matrix composition.

X9:

2 1

15 October 1996

Lee Hatcher Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: 00681-089-163, U of W;

ARI Job #: Q408, parts I-III

Dear Mr. Hatcher,

Please find enclosed the original chain-of-custody (COC) record, faxed analysis requests, and final results for samples from the above referenced project. Eleven wipe samples were received in good condition on 10/8/96. There were no discrepancies between the COC and sample labels, and they were logged into the laboratory without incident of note.

As instructed, samples MCC101A and MCC104A were analyzed immediately, on a 24-hr TAT, for PCBs by method 8081. These analyses were routine, however sample MCC104A required reanalysis at dilution because the concentration of Aroclor-1260 was above the range of instrument calibration. Both sets of results are reported. These results were faxed to you and Joanne Yan-Gwo as soon as they became available. Upon receipt of a fax from Joanne on 10/9, analysis of samples MCC105B and MCC107B was initiated. These results were also faxed to you as soon as they were available. Finally, sample MCC108C was analyzed at your request, faxed on 10/11, and these results were faxed to you earlier today.

Method blanks and Laboratory Control Samples (LCS) were extracted and analyzed with each prep batch. LCS recovery reports are included to provide QC documentation for the project.

A copy of this package will be kept on file should you need additional information at a future date. If you have questions or need additional documentation, please call me any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Manager

206-340-2866, ext. 117

Enclosures cc: file #Q408

DAMES & MOORE

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

207.5

Chain of Custody

Date 10 / 8 / 96 Page 1 of

Number of Containers

roter bens. Sample Receipt Instructions Comments/ (8)**EP TOX Metals** Metals (13) Priority Pollutant **Analysis Request** Received by (lab) 0808/809 Pesticides (CBs) Hydrocarbons 610/8310 Polycyclic Aromatic BTX 602/8015 625/8270 (GC/MS) Base/Neutral/Acids Relinquished by: Aromatic Volatiles 0108/109 Halogenated Volatiles Volatile Organics 624/8240 (GC/MS) Matrix 10/8/04 10@B WIPE Sampler's Signature: Apanne Jan-Guic Project Number: 00681-089-163 Time 1038 1042 5401 1052 :034 940 DANGING MCC-101A, MCC 104A 花の 440 8 200 Date Special Instructions/Comments: Sampler's Initials: JYG MCC 109 D. DUP Project Manager: Laboratory: Tum around time: NCC-BLANK MCC101 A MCC 102B MCC 103C Sample ID MCCIDOC MCC 107B MCCIOSC MCC 109 D MCC 104A MCCIOSB

Chain of custody seals: Total no. of containers:

Rec'd good condition/cold; Conforms to record:

(Printed) (Sig) Many

Yan-Gwo

(Company)

Or Lee Hatener for The risuly (Company) Dames & whoold

(2) coul 728-0744 JOANNE Yenn-GAUD (Printed) JO Q 1146

for 24 hrs turn around time (Sig) House your Gras

(Date) 10/8/44 (Time)

(Time) 1145

and further instruction

Lab number

-(Date)/0/8/

Sample No: MCC101A

Lab Sample ID: Q408A

QC Report No: Q408-Dames & Moore

LIMS ID: 96-17155

Project:

00681-089-163

Matrix: Wipe

Date Sampled: 10/08/96

Data Release Authorized:

Date Received: 10/08/96

Reported: 10/09/96

Date extracted: 10/08/96 Date analyzed: 10/08/96

Florisil Cleanup: No

Sample Amount: 1.00 Wipe

Sulfur Cleanup: No

GPC Cleanup: No

Final Ext Vol: 10 mL

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte	Value
12674-11-2	Aroclor 1016	1.0 0
53469-21-9	Aroclor 1242	1.0 U
12672-29-6	Aroclor 1248	1.0 0
11097-69-1	Aroclor 1254	1.0 U
11096-82-5	Aroclor 1260	7.5

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 72.0% Tetrachlorometaxylene 62.0%

- Indicates an estimated value when that result is less than the J calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank В
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCC104A

Lab Sample ID: Q408B

LIMS ID: 96-17156

Matrix: Wipe

QC Report No: Q408-Dames & Moore

Project:

00681-089-163

Date Sampled: 10/08/96

Date Received: 10/08/96

Data Release Authorized:

Reported: 10/09/96

Date extracted: 10/08/96

Date analyzed: 10/08/96 Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No

Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	22	E

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 71.0% Tetrachlorometaxylene 56.0%

- Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank В
- Indicates compound was not analyzed. NA
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCC104A

DILUTION

Lab Sample ID: Q408BDIL

QC Report No: Q408-Dames & Moore

LIMS ID: 96-17156 Matrix: Wipe

Project:

00681-089-163

Data Release Authorized:

Date Sampled: 10/08/96

Date Received:

10/08/96

Reported: 10/09/96

Date extracted: 10/08/96

GPC Cleanup: No

Date analyzed: 10/09/96

Florisil Cleanup:

Sample Amount: 1.00 Wipe

Sulfur Cleanup: No

Final Ext Vol: 10 mL

Conc/Dilution Factor: 1:2

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	2.0	U
53469-21-9	Aroclor	1242	2.0	U
12672-29-6	Aroclor	1248	2.0	U
11097-69-1	Aroclor	1254	2.0	U
11096-82-5	Aroclor	1260	23	7

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 70.0% Tetrachlorometaxylene 58.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank B
- Indicates compound was not analyzed.
- Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCC105B

Lab Sample ID: Q408E

LIMS ID: 96-17159

Matrix: Wipe

QC Report No: Q408-Dames & Moore

Project:

00681-089-163

Date Sampled: 10/08/96

Date Received; 10/09/96

Data Release Authorized:

Reported: 10/10/96

Date extracted: 10/10/96 Date analyzed: 10/10/96

Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte	Value	
12674-11-2	Aroclor 1016	1.0 (J
53469-21-9	Aroclor 1242	1.0 1	J
12672-29-6	Aroclor 1248	1.0 (J
11097-69-1	Aroclor 1254	1.0 (J
11096-82-5	Aroclor 1260	6.9	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 66.0% Tetrachlorometaxylene 60.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- NA Indicates compound was not analyzed.
- Indicates no recovery due to interferences. NR
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCC107B

Lab Sample ID: Q408G

QC Report No: Q408-Dames & Moore

LIMS ID: 96-17161 Matrix: Wipe

Project:

00681-089-163

Date Sampled: 10/09/96 Date Received:

10/08/96

Data Release Authorized:

Reported: 10/10/96

Final Ext Vol:

Date extracted: 10/10/96 Date analyzed: 10/10/96 Sample Amount: 1.00 Wipe

10 mL

GPC Cleanup: No Florisil Cleanup: No Sulfur Cleanup: No Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		 Talue	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	15	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 66.0% Tetrachlorometaxylene 61.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out. D
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank
- Indicates compound was not analyzed. NA
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCC108C

Lab Sample ID: Q408H

QC Report No: Q408-Dames & Moore

LIMS ID: 96-17162

Project:

00681-089-163

Matrix: Wipe Date Sampled:

10/08/96 10/08/96

Data Release Authorized: Reported: 10/15/96

Date Received:

Date extracted: 10/14/96 Date analyzed: 10/14/96

GPC Cleanup: No Florisil Cleanup: No Acid Cleanup: Yes

Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

Sulfur Cleanup: No Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte	4.0	Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	5.7	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl	63.0%
Tetrachlorometaxylene	59.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: Method Blank

Lab Sample ID: Q408MB

LIMS ID: 96-17155

Matrix: Wipe

QC Report No: Q408-Dames & Moore

Project:

00681-089-163

Date Sampled: NA

Date Received: NA

Data Release Authorized: Reported: 10/09/96

Date extracted: 10/08/96

Date analyzed: 10/08/96 Sample Amount: 1.00 Wipe

Final Ext Vol: 10 mL GPC Cleanup: No

Florisil Cleanup: No

Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	1.0	U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 88.0% Tetrachlorometaxylene

- Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the U given detection limit.
- B Found in associated method blank
- Indicates compound was not analyzed. NA
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. Y The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Lab Sample ID: Q408SB

LIMS ID: 96-17155

Matrix: Wipe

QC Report No: Q408-Dames & Moore

Project:

00681-089-163

Data Release Authorized: Reported: 10/09/96

LABORATORY CONTROL SAMPLE RECOVERY

Date extracted: 10/08/96

CONSTITUENT	SPIKE VALUE	SPIKE AMT	% RECOVERY
LABORATORY CONTROL SAMPLE			
Aroclor 1242	6.82	10.0	68.2%

Aroclor Surrogate Recoveries

Decachlorobiphenyl 82.0% Tetrachlorometaxylene 82.0%

Values reported in ug/Sample

Sample No: Method Blank

Lab Sample ID: Q408MB

QC Report No: Q408-Dames & Moore

LIMS ID: 96-17159 Matrix: Wipe

Project:

00681-089-163

Date Sampled: Date Regeived:

NA

Data Release Authorized Reported: 10/10/96

Date extracted: 10/10/96

Date analyzed: 10/10/96 Sample Amount: 1.00 Wipe

GPC Cleanup: No Florisil Cleanup: No

Sulfur Cleanup: No

Final Ext Vol: 10 mL Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	1.0	U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 70.0% Tetrachlorometaxylene 70.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank B
- Indicates compound was not analyzed. NA
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. Y The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Lab Sample ID: Q408SB

LIMS ID: 96-17159

Matrix: Wipe

QC Report No: Q408-Dames & Moore

Project:

00681-089-163

Data Release Authorized:

Reported: 10/10/96

LABORATORY CONTROL SAMPLE RECOVERY

Date extracted: 10/10/96

CONSTITUENT	SPIKE VALUE	SPIKE AMT	% RECOVERY
LABORATORY CONTROL SAMPLE			
Aroclor 1242	6.82	10.0	68.2%

Aroclor Surrogate Recoveries

Decachlorobiphenyl 83.0% Tetrachlorometaxylene 85.0%

Values reported in ug/Sample

Sample No: Method Blank

Lab Sample ID: Q408MB

QC Report No: Q408-Dames & Moore

LIMS ID: 96-17162

Project:

00681-089-163

Matrix: Wipe

Date Sampled: Dage Received:

NA

Data Release Authorized:

Reported: 10/15/96

Date extracted: 10/14/96

GPC Cleanup: No

Date analyzed: 10/14/96

Florisil Cleanup: No

Acid Cleanup: Yes

Sample Amount: 1.00 Wipe Final Ext Vol:

Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	1.0	U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 67.0% Tetrachlorometaxylene 71.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank R
- NA Indicates compound was not analyzed.
- Indicates no recovery due to interferences. NR
- Indicates a raised reporting limit due to matrix interferences. Y The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Lab Sample ID: Q408SB

LIMS ID: 96-17162

Matrix: Wipe

Data Release Authorized:

Reported: 10/15/96

QC Report No: Q408-Dames & Moore

Project:

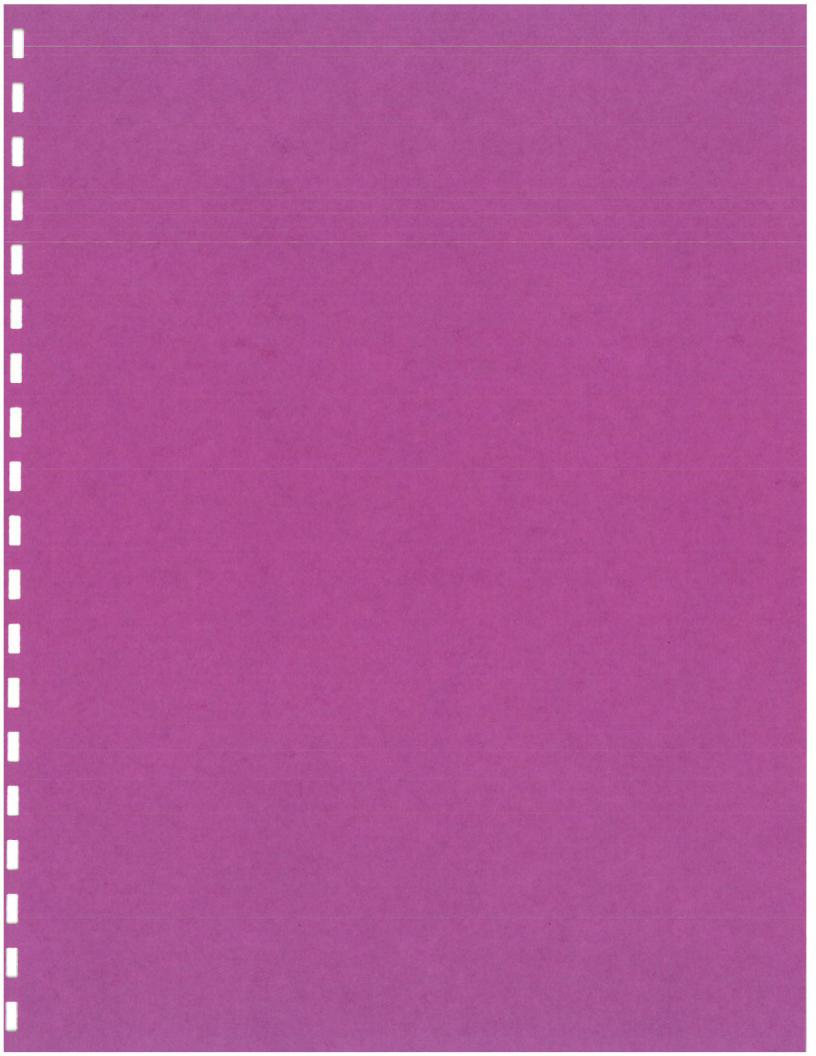
00681-089-163

LABORATORY CONTROL SAMPLE RECOVERY

Date extracted: 10/14/96

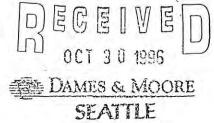
SPIKE SPIKE CONSTITUENT VALUE AMT RECOVERY LABORATORY CONTROL SAMPLE Aroclor 1242 5.90 10.0 59.0%

Aroclor Surrogate Recoveries


Decachlorobiphenyl

72.0%

Tetrachlorometaxylene


72.0%

Values reported in ug/Sample

29 October 1996

Lee Hatcher Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: 00681-088, U of W; ARI Job #: O617

Dear Mr. Hatcher,

Please find enclosed the original chain-of-custody (COC) record and results for samples from the above referenced project. Three wipe samples were received in good condition on 10/25/96. There were no discrepancies between the COC and sample labels, and they were logged into the laboratory without incident of note. Sample MCC-402-A was put on "hold" status pending the results of MCC-401, as instructed on the COC.

Analyses for PCBs were performed by EPA method 8081. They were routine, and these results were faxed to you earlier today. Note that sample MCC-401 required reanalysis at a dilution because the instrument detector was saturated with aroclor-1260 when initially analyzed. Both sets of results are reported.

A Laboratory Control Sample was extracted and analyzed with the samples, and a recovery report is included to provide QC documentation for the project.

A copy of this package will be kept on file should you need additional information at a future date. If you have questions or need additional documentation, please call me any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Manager

206-340-2866, ext. 117

Enclosures cc: file #Q617

DAMES & MOORE

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

いり8121・(206) 728-0744

Chain of Custody

Total no. of containers: Number of Containers Sample Receipt Chain of custody seals: Rec'd good condition/cold: Conforms to record: Instructions Comments/ Lab number (Date) 10/18/19 (8) **EP TOX Metals** Metals (13) (Printed) P. May Vichitkullwongs (Printed) DAR D. HARRY Priority Pollutant **Analysis Request** (Sig) TJ-PD-Mount (Company) ARE Received by (lab): _ (Date) 10/25/10 (Time) 1625 0808/809 Dames & Mothe Pesticides (PCBs (Sig) Wichiel Kalluoren Hydrocarbons 610/8310 Polycyclic Aromatic BTX 602/8015 625/8270 (GC/MS) Base/Neutral/Acids (Time) 16025 Relinquished by: 602/8020 Aromatic Volatiles (Company)_ Halogenated Volatiles 601/8010 Volatile Organics 624/8240 (GC/MS) METHOD WITH Matrix Sampler's Initials: And Handers Sampler's Signature: . UN 3 days turn around . Hease call when results of Hothley Time 2 days Project Number: COCPI-1925 Date Special Instructions/Comments: Project Manager: -Laboratory: -Tum around time: MCC-402-4 time rate. are ready Sample ID MC5-45 RLANK

150 mg/ · Analyze, MCC 401 for PCBS it

Sample No: Blank

Lab Sample ID: Q617A

LIMS ID: 96-18378

Matrix: Wipes

QC Report No: Q617-Dames & Moore

Project:

00681-088

Date Sampled: 10/25/96

ate Received: 10/25/96 She Menna

Data Release Authorized: Reported: 10/29/96

Date extracted: 10/28/96 Date analyzed: 10/28/96

Sample Amount: 1.00 Wipes Final Ext Vol: 10 mL

GPC Cleanup: No

Florisil Cleanup: No Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	1.0	U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl Tetrachlorometaxylene 67.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- S Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out. D
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- Indicates compound was not analyzed. NA
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCC-401

Lab Sample ID: Q617B

LIMS ID: 96-18379

Matrix: Wipes

QC Report No: Q617-Dames & Moore

Project:

00681-088

Date Sampled: 10/25/96 Date Received: 10/25/96

Data Release Authorized:

Reported: 10/29/96

Date extracted: 10/28/96

Date analyzed: 10/28/96 Sample Amount: 1.00 Wipes

Final Ext Vol: 10 mL GPC Cleanup: No

Florisil Cleanup: No Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	S	
11096-82-5	Aroclor	1260	S	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 84.0% Tetrachlorometaxylene 61.0%

- .Τ Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCC-401

DILUTION

Lab Sample ID: Q617BDIL

QC Report No:

Q617-Dames & Moore

LIMS ID: 96-18379

Project:

00681-088

Matrix: Wipes

Date Sampled: Date Received:

10/25/96 10/25/96

Data Release Authorized:

Reported: 10/29/96

Date extracted: 10/28/96

Final Ext Vol:

Date analyzed: 10/28/96

10 mL

Sample Amount: 1.00 Wipes

GPC Cleanup: No Florisil Cleanup: No

Sulfur Cleanup: No

Conc/Dilution Factor: 1:50

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	50	U
53469-21-9	Aroclor	1242	50	U
12672-29-6	Aroclor	1248	50	U
11097-69-1	Aroclor	1254	50	U
11096-82-5	Aroclor	1260	430	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl D Tetrachlorometaxylene D

- Indicates an estimated value when that result is less than the J calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the U given detection limit.
- Found in associated method blank B
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: Method Blank

Lab Sample ID: Q617MB

QC Report No: Q617-Dames & Moore

LIMS ID: 96-18378 Matrix: Wipes

Project:

00681-088

Date Sampled:

Date Received:

Data Release Authorized: Reported: 10/29/96

GPC Cleanup: No

Florisil Cleanup: No Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Date extracted: 10/28/96 Date analyzed: 10/28/96 Sample Amount: 1.00 Wipes Final Ext Vol: 10 mL

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	1.0	U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 84.0% Tetrachlorometaxylene 76.0%

- Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- Indicates compound was not analyzed. NA
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Lab Sample ID: Q617SB LIMS ID: 96-18378

Matrix: Wipes

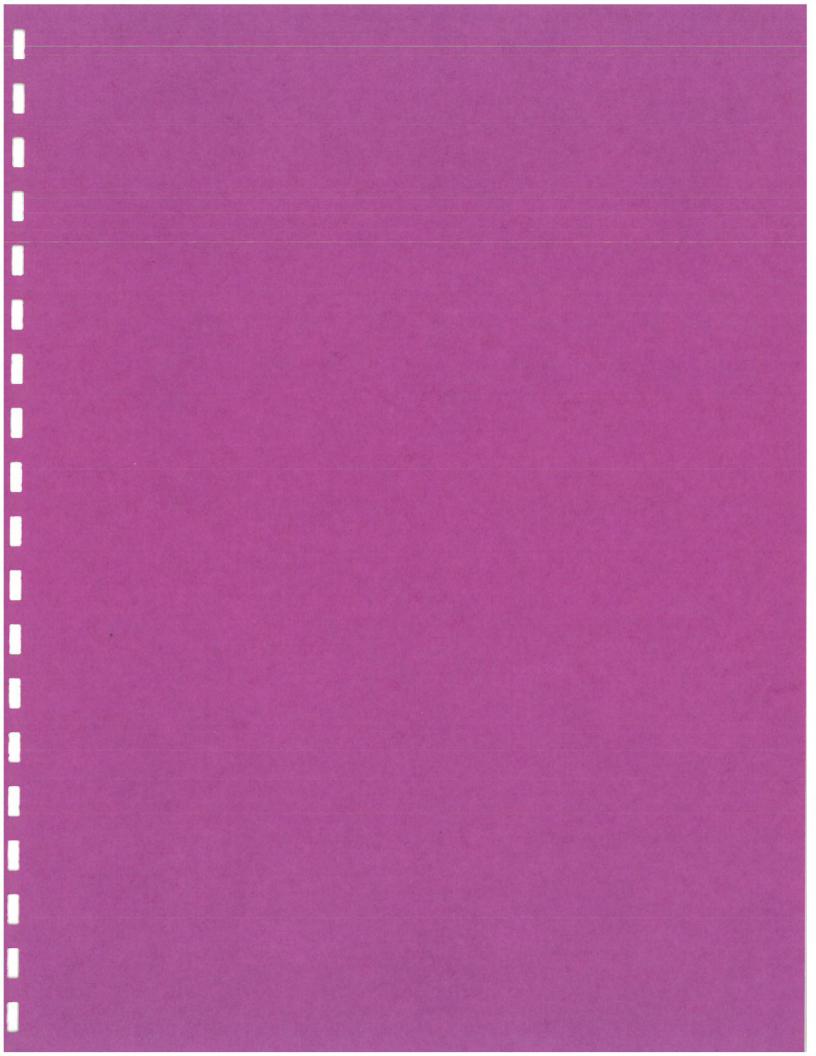
Data Release Authorized: Reported: 10/29/96

QC Report No: Q617-Dames & Moore

Project:

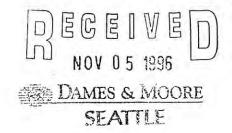
00681-088

LABORATORY CONTROL SAMPLE RECOVERY


Date extracted: 10/28/96

CONSTITUENT	SPIKE VALUE	SPIKE AMT	% RECOVERY
LABORATORY CONTROL SAMPLE			
Aroclor 1242	6.84	10.0	68.4%

Aroclor Surrogate Recoveries


Decachlorobiphenyl 84.0% Tetrachlorometaxylene 80.0%

Values reported in ug/Sample

31 October 1996

Lee Hatcher Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: 00681-088, U of W; ARI Job #: Q617 II

Dear Mr. Hatcher,

Please find enclosed the faxed request for analysis and results for a sample from the above referenced project. Three wipe samples were originally received in good condition on 10/25/96. Two of them were analyzed immediately, the results for which were submitted to you yesterday.

Upon receipt of the enclosed fax, sample MCC-402A was taken off "hold" status and analyzed for PCBs by EPA method 8081. The analysis was routine, and these results were faxed to Joanne and P. May earlier today.

A Laboratory Control Sample was extracted and analyzed with the samples, and a recovery report is included to provide QC documentation for the project.

A copy of this package will be kept on file should you need additional information at a future date. If you have questions or need additional documentation, please call me any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Manager

206-340-2866, ext. 117

Enclosures cc: file #Q617

Sample No: MCC-402A

Lab Sample ID: Q617C

LIMS ID: 96-18380

Matrix: Wipes

QC Report No: Q617-Dames & Moore

Project:

00681-088

Date Sampled: 10/25/96 Date Received: 10/29/96

Data Release Authorized: Reported: 10/31/96

Date extracted: 10/30/96
Date analyzed: 10/30/96
Sample Amount: 1.00 Wipes
Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No Sulfur Cleanup: No Conc/Dilution Factor: 1:1

CAS Number	Analyte		Value	
12674-11-2	Aroclor :	1016	1.0	U
53469-21-9	Aroclor :	1242	1.0	U
12672-29-6	Aroclor :	1248	1.0	U
11097-69-1	Aroclor :	1254	1.0	U
11096-82-5	Aroclor :	1260	5.7	

Reported in Total ug/Sample

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 62.0% Tetrachlorometaxylene 56.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: Method Blank

Lab Sample ID: Q617MB

QC Report No: Q617-Dames & Moore

LIMS ID: 96-18380

Project:

00681-088

Matrix: Wipes

Date Sampled: NA

Date Received:

Data Release Authorized:

Date extracted: 10/30/96

Reported: 10/31/96

GPC Cleanup: No

Florisil Cleanup: No

Sulfur Cleanup: No

Date analyzed: 10/30/96 Sample Amount: 1.00 Wipes Final Ext Vol: 10 mL

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	1.0	U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 71.0% Tetrachlorometaxylene 67.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- II Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Lab Sample ID: Q617SB

LIMS ID: 96-18380

Matrix: Wipes

QC Report No: Q617-Dames & Moore

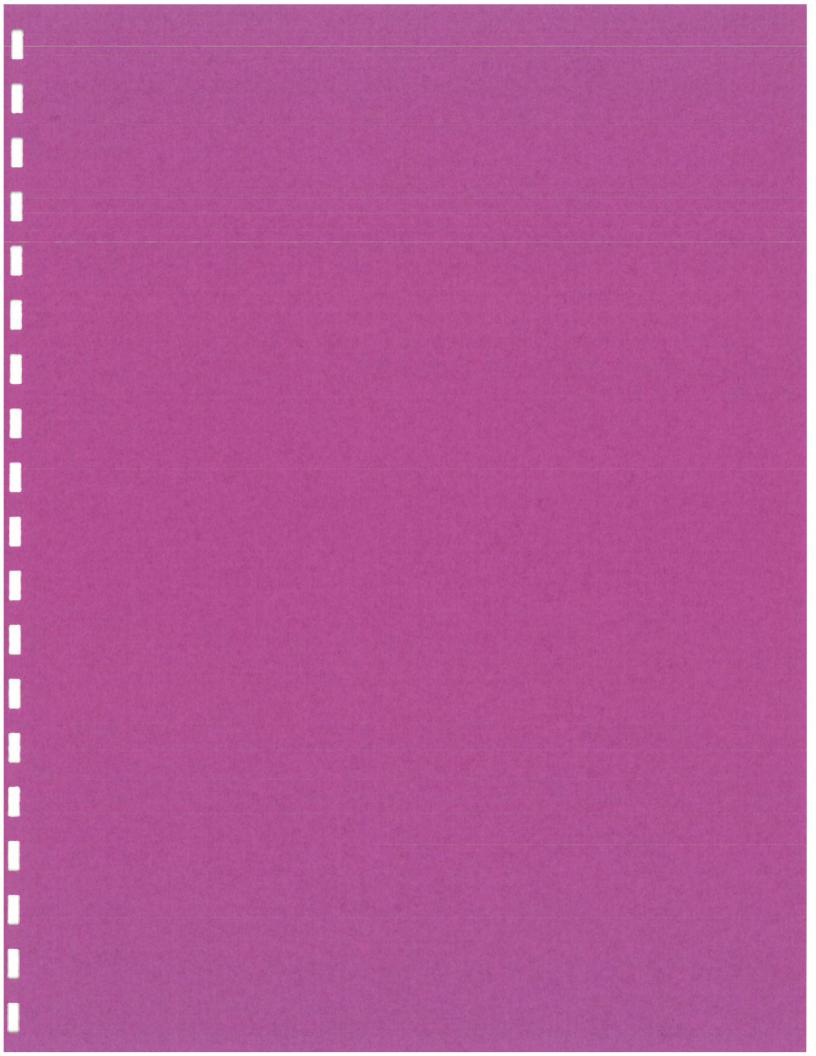
Project:

00681-088

Data Release Authorized:

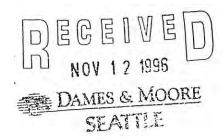
Reported: 10/31/96

LABORATORY CONTROL SAMPLE RECOVERY


Date extracted: 10/30/96

	and the same of th	25.525	
	SPIKE	SPIKE	%
CONSTITUENT	VALUE	AMT	RECOVERY
LABORATORY CONTROL SAMPLE			
Aroclor 1242	6.60	10.0	66.0%

Aroclor Surrogate Recoveries'


Decachlorobiphenyl 72.0% Tetrachlorometaxylene 69.0%

Values reported in ug/Sample

8 November 1996

Lee Hatcher Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: 00681-088, U of W; ARI Job #: Q699

Dear Mr. Hatcher,

Please find enclosed the original chain-of-custody (COC) record and results for samples from the above referenced project. Five wipe samples were received in good condition on 11/5/96. There were no discrepancies between the COC and sample labels, and they were logged into the laboratory without incident of note.

Analyses for PCBs were performed by EPA method 8081. They were routine, and these results were faxed to P.May Vichitkulwongsa earlier today. There were no dilutions or reanalyses required.

A Laboratory Control Sample was extracted and analyzed with the samples, and a recovery report is included to provide QC documentation for the project.

A copy of this package will be kept on file should you need additional information at a future date. If you have questions or need additional documentation, please call me any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemöeller Project Manager

206-340-2866, ext. 117

Enclosures cc: file #O699

DAMES & MOORE

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

Chain of Custody

Date [

Number of Containers Sample Receipt Total no. of containers: Chain of custody seals: Rec'd good condition/cold: Conforms to record: Comments/ Instructions Lab number: (8) **EP TOX Metals** (Date) Metals (13) Priority Pollutant Analysis Request Received by (lab) (Date) LASTAGO (Time) NOS (Printed) F. Vichi-Haulind Agg (Printed) (Buy (Company 0808/809 (Company) Towles & Work Pesticides/PCBs Hydrocarbons 610/8310 Polycyclic Aromatic BTX 602/8015 625/8270 (GC/MS) Base/Neutral/Acids 500 602/8020 Relinquished by Aromatic Volatiles Halogenated Volatiles 601/8010 (Time)_ √ (SiS) Volatile Organics 624/8240 (GC/MS) WIRZO time, UW rate. Thanks Sampler's Initials: Control Time Matrix Project Number: Odobi - Opg - 163 @ 3 days turn around Project Manager: 100 Hotchek 11/5/d 8:40 please call with results 8:8 8;6 4:05 01:6 3 days Date Special Instructions/Comments: Laboratory: -Turn around time: -Sampler's Signature: ACC DOB Sample ID MCC SD2 MCC ED3 20 PS JCC 501

F. Nory In-Buttanon ragin

Sample No: MCC 50B

Lab Sample ID: Q699A

QC Report No: Q699-Dames & Moore

LIMS ID: 96-18823

Project:

00681-089-163

Matrix: WIPES

Date Sampled: 11/05/96

Date Received:

11/05/96

Data Release Authorized: Reported: 11/08/96

Date extracted: 11/05/96

GPC Cleanup: No

Date analyzed: 11/05/96

Florisil Cleanup: No

Acid Cleanup: Yes

Sample Amount: 1.00 WIPES

Sulfur Cleanup: No

Final Ext Vol: 10 mL

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte	Value	
12674-11-2	Aroclor 1016	1.0 0	J
53469-21-9	Aroclor 1242	1.0 0	J
12672-29-6	Aroclor 1248	1.0 0	J
11097-69-1	Aroclor 1254	1.0 0	J
11096-82-5	Aroclor 1260	1.0 0	J

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 61.0% Tetrachlorometaxylene 59.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCC 501

Lab Sample ID: 0699B

LIMS ID: 96-18824

Matrix: WIPES

QC Report No: Q699-Dames & Moore

Project:

00681-089-163

Date Sampled: 11/05/96

Date Received: 11/05/96

Data Release Authorized: Reported: 11/08/96

Date extracted: 11/05/96 Date analyzed: 11/05/96

Sample Amount: 1.00 WIPES

Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No

Acid Cleanup: Yes

Sulfur Cleanup: No Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor 1	.016	1.0	U
53469-21-9	Aroclor 1	242	1.0	U
12672-29-6	Aroclor 1	248	1.0	U
11097-69-1	Aroclor 1	254	1.0	U
11096-82-5	Aroclor 1	260	6.5	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 64.0% Tetrachlorometaxylene 64.0%

- Indicates an estimated value when that result is less than the J calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank B
- Indicates compound was not analyzed. NA
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. Y The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCC 502

Lab Sample ID: Q699C

QC Report No: Q699-Dames & Moore

LIMS ID: 96-18825 Matrix: WIPES

Project:

00681-089-163

Date Sampled:

11/05/96

Date Received:

Data Release Authorized:

11/05/96

Reported: 11/08/96

Date extracted: 11/05/96

GPC Cleanup: No

Date analyzed: 11/05/96

Florisil Cleanup: No Acid Cleanup: Yes

Sample Amount: 1.00 WIPES Final Ext Vol: 10 mL

Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte	_	Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	1.9	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 62.0% Tetrachlorometaxylene 64.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCC 503

Lab Sample ID: Q699D

QC Report No: Q699-Dames & Moore

LIMS ID: 96-18826

Project:

00681-089-163

Matrix: WIPES

Date Sampled:

11/05/96

Date Received: 11/05/96

Data Release Authorized

Reported: 11/08/96

Date extracted: 11/05/96

GPC Cleanup: No

Date analyzed: 11/05/96

Florisil Cleanup: No Acid Cleanup:

Sample Amount: 1.00 WIPES

Yes Sulfur Cleanup: No

Final Ext Vol: 10 mL Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte	Value	
12674-11-2	Aroclor 1016	1.0	U
53469-21-9	Aroclor 1242	1.0	U
12672-29-6	Aroclor 1248	1.0	U
11097-69-1	Aroclor 1254	1.0	U
11096-82-5	Aroclor 1260	11	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 64.0% Tetrachlorometaxylene 65.0%

- Indicates an estimated value when that result is less than the J calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the U given detection limit.
- В Found in associated method blank
- Indicates compound was not analyzed. NA
- Indicates no recovery due to interferences. NR
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCC 504

Lab Sample ID: Q699E

LIMS ID: 96-18827

Matrix: WIPES

QC Report No: Q699-Dames & Moore

Project:

00681-089-163

Date Sampled:

11/05/96

Date Received:

11/05/96

Data Release Authorized: Reported: 11/08/96

Date extracted: 11/05/96 Date analyzed: 11/05/96

Sample Amount: 1.00 WIPES Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No Acid Cleanup: Yes

Sulfur Cleanup: No Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	4.4	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 61.0% Tetrachlorometaxylene 62.0%

- Indicates an estimated value when that result is less than the J calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- IJ Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank В
- Indicates compound was not analyzed. NA
- Indicates no recovery due to interferences. NR
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: Method Blank

Lab Sample ID: Q699MB

QC Report No: Q699-Dames & Moore

LIMS ID: 96-18823 Matrix: WIPES

Project:

00681-089-163

Date Sampled: NA

Date Received:

Data Release Authorized: Reported: 11/08/96

Date extracted: 11/05/96

GPC Cleanup: No

Date analyzed: 11/05/96

Florisil Cleanup: No

Acid Cleanup: Yes

Sample Amount: 1.00 WIPES

Sulfur Cleanup: No

Final Ext Vol: 10 mL

Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	1.0	U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 77.0% Tetrachlorometaxylene 74.0%

- Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank
- NA Indicates compound was not analyzed.
- Indicates no recovery due to interferences. NR
- Indicates a raised reporting limit due to matrix interferences. Y The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Lab Sample ID: Q699SB LIMS ID: 96-18823

QC Report No: Q699-Dames & Moore

Project:

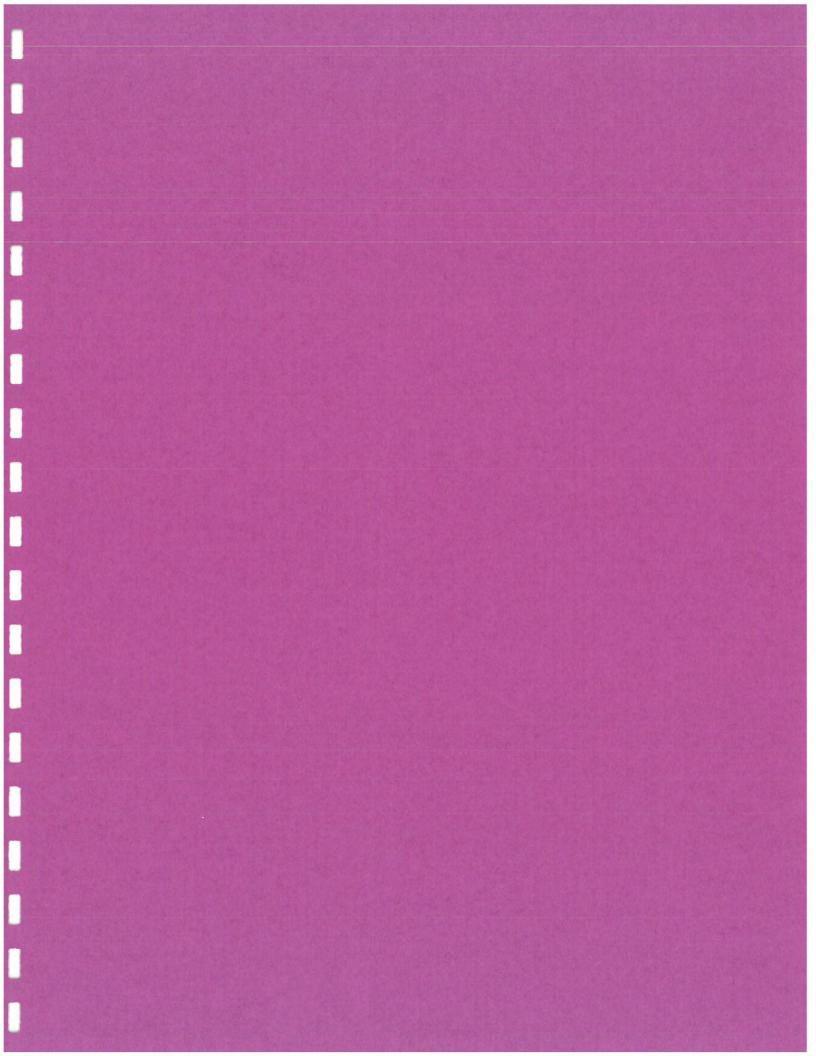
00681-089-163

Data Release Authorized:

Reported: 11/08/96

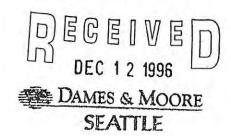
Matrix: WIPES

LABORATORY CONTROL SAMPLE RECOVERY


Date extracted: 11/05/96

SPIKE SPIKE CONSTITUENT VALUE AMT RECOVERY LABORATORY CONTROL SAMPLE Aroclor 1242 7.09 10.0 70.9%

Aroclor Surrogate Recoveries


Decachlorobiphenyl 74.0% Tetrachlorometaxylene 72.0%

Values reported in ug/Sample

11 December 1996

P. May Vichitkulwongsa Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: 00681-089-163 ARI Job #: R021

Dear May:

Please find enclosed the original Chain-of-Custody (COC) record and final results for samples from the above referenced project. Two wipe samples were received in good condition on 12/9/96. There were no discrepancies between the COC and sample labels, and they were logged into the laboratory without incident of note. All samples were analyzed for PCBs as requested.

Both samples were initially analyzed on 12/10/96. The calibration standards from that day did not meet acceptance criteria. Verbal results were provided based on those analyses. A new calibration curve was established and the samples were re-analyzed. The re-analyses proceeded without incident of note. The results for the re-analyses only have been submitted for these samples.

A copy of this package will be kept on file should you need additional information at a future date. If you have questions or need additional documentation, please call me any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Mark D. Harris Project Manager 206-340-2866, ext. 113

Enclosures cc: file #R021 MDH/mdh

Chai_of Custody Record & aboratory Analysis Request

. .

Analytical Chemist and Consultants

Analytical Resources, I

porated

Laboratory Analysis Request	s Request	Page 1 of	400 Ninth Avenue North
ARI Client: Dawes & Mare	Agre Phone#: 728-0744	Cooler Temp: : 3/16/201	Seattle, WA 98109-4708 (206) 621-6490
Client Contact: P. May Viv	White	Analysis Required	(200) 621-7323 (rax)
Client Project ID: 00631 -	591-180-18900		
Samplers: P. May		3/5	
Sample ID	Date Time Matx Cont ID	PC	
1 MCC-601	12/2/6/6/2010 Wipe 1	×	
2 MCC-Blank	12AKB (1)	X	
ω			
4			
5			
6			
7			
ARI Project No: (202)	Relinquished by: (Signature) Relinquished by:	Relinquished by:	Relinquished by: (Signature)
Comments/Special Instructions:	Printed Name: Victorial Manufactor Printed Name:	Printed Name:	Printed Name:
1 day turn gramd	Company: D & V	Company:	Company:
time, please call	Date: 12/9/96 Time: 12/5/5	Date: Time:	Date: Time:
ASPS	Received by: (Signature)	Received by: (Signature)	Received by: (Signature)
	Printed Name: () South	Printed Name:	Printed Name:
,	Company:	Company:	Company:
	Date: 12991 1me; 345	Date: Time:	Date: Time:

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following Standard Operating Procedures and our Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the invoiced amount for said services. The acceptance by the client of a proposal for services by ARI releases. ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the client.

Sample No: Method Blank

Lab Sample ID: R021MB

QC Report No: R021-Dames & Moore

LIMS ID: 96-21042

Project:

00681-089-163

Matrix: Wipe

Date Sampled: NA

Data Release Authorized:

Date Received:

Reported: 12/11/96

Date extracted: 12/09/96 Date analyzed: 12/10/96

Sample Amount: 1.00 Wipe

Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No

Sulfur Cleanup: No Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	1.0	U
11104-28-2	Aroclor	1221	2.0	U
11141-16-5	Aroclor	1232	1.0	U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 91.0% Tetrachlorometaxylene 74.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- Indicates no value reported due to saturation of the detector. S
- Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. Y The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCC-601

Lab Sample ID: R021A

LIMS ID: 96-21042 Matrix: Wipe QC Report No: R021-Dames & Moore

Project:

00681-089-163

Date Sampled: Date Received:

12/09/96 12/09/96

Data Release Authorized:

Reported: 12/11/96

GPC Cleanup: No

Date extracted: 12/09/96
Date analyzed: 12/10/96
Sample Amount: 1.00 Wipe
Final Ext Vol: 10 mL

Florisil Cleanup: No
Sulfur Cleanup: No
Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte	Value
12674-11-2	Aroclor 1016	1.0 U
53469-21-9	Aroclor 1242	1.0 U
12672-29-6	Aroclor 1248	1.0 U
11097-69-1	Aroclor 1254	S
11096-82-5	Aroclor 1260	S
11104-28-2	Aroclor 1221	2.0 U
11141-16-5	Aroclor 1232	1.0 U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 128% Tetrachlorometaxylene 62.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCC-601

DILUTION

Lab Sample ID: R021ADIL LIMS ID: 96-21042

6-21042

QC Report No: R021-Dames & Moore

Project:

00681-089-163

Date Sampled: Date Received: 12/09/96 12/09/96

Data Release Authorized:

Reported: 12/11/96

Matrix: Wipe

IM. Menna

Date extracted: 12/09/96
Date analyzed: 12/10/96
Sample Amount: 1.00 Wipe
Final Ext Vol: 10 mL

GPC Cleanup: No
Florisil Cleanup: No
Sulfur Cleanup: No
Conc/Dilution Factor: 1:100

Reported in Total ug/Sample

CAS Number	Analyte	Value	
12674-11-2	Aroclor 1016	100	U
53469-21-9	Aroclor 1242	100	U
12672-29-6	Aroclor 1248	100	U
11097-69-1	Aroclor 1254	100	U
11096-82-5	Aroclor 1260	990	
11104-28-2	Aroclor 1221	200	U
11141-16-5	Aroclor 1232		U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl D Tetrachlorometaxylene D

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCC-Blank

Lab Sample ID: R021B

LIMS ID: 96-21043

Matrix: Wipe

QC Report No: R021-Dames & Moore

Project:

00681-089-163

Date Sampled: Date Received: 12/09/96

12/09/96

Data Release Authorized: Reported: 12/11/96

Date extracted: 12/09/96 Date analyzed: 12/10/96 Sample Amount: 1.00 Wipe Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No

Sulfur Cleanup: No Conc/Dilution Factor: 1:1

Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor 10	16	1.0	U
53469-21-9	Aroclor 12	42	1.0	U
12672-29-6	Aroclor 12	48	1.0	U
11097-69-1	Aroclor 12	54	1.0	U
11096-82-5	Aroclor 12	60	1.0	U
11104-28-2	Aroclor 12	21	2.0	U
11141-16-5	Aroclor 12	32	1.0	U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 89.0% Tetrachlorometaxylene 104%

- Indicates an estimated value when that result is less than the J calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the U given detection limit.
- В Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. Y The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Lab Sample ID: R021SB

LIMS ID: 96-21042

Matrix: Wipe

Data Release Authorized:

Reported: 12/11/96

QC Report No: R021-Dames & Moore

Project:

00681-089-163

LABORATORY CONTROL SAMPLE RECOVERY


Date extracted: 12/09/96

CONSTITUENT	SPIKE VALUE	SPIKE AMT	% RECOVERY
LABORATORY CONTROL SAMPLE			
Aroclor 1242	7.70	10.0	77.0%

Aroclor Surrogate Recoveries

Decachlorobiphenyl 91.0% Tetrachlorometaxylene 85.0%

Values reported in ug/Sample

17 December 1996

P. May Vichitkulwongsa Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: 00681-089-163 ARI Job #R118

Dear May:

Please find enclosed the original Chain-of-Custody (COC) record and final results for samples from the above referenced project. Five wipe samples and two concrete samples were received in good condition on 12/13/96. The samples identified on the COC as MEB-100 and MEB-101 were associated with sample jars that were labeled MCC-100 and MCC-101, respectively. Based on the nomenclature of the remaining wipe samples, these two samples were logged in per the IDs on the COC. All samples were analyzed for PCBs as requested.

A very high level of Aroclor 1260 was detected in both concrete samples following their initial analyses. Both samples were diluted and re-analyzed. The re-analyses of Sample MCCC-02 confirmed that Aroclor 1260 was present in this sample and was not the results of carryover from Sample MCCC-01. The results for the initial analyses and the dilutions have been submitted for these samples.

A copy of this package will be kept on file should you need additional information at a future date. If you have questions or need additional documentation, please call me any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Mark D. Harris Project Manager 206-340-2866, ext. 113

Enclosures

cc: file #R118

MDH/mdh

Chain of Custody

DAMES & MOORE

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

Number of Containers Total no. of containers: Date 24 13/96 Page 1 of _ Sample Receipt Chain of custody seals: Rec'd good condition/cold: Conforms to record: Instructions Comments/ Lab number: (8) **EP TOX Metals** (Date) <u>/</u> Metals (13) Priority Pollutant **Analysis Request** Received by (lab) (Company)_ (Printed) P. May Victuithaulword Fifmted) (Date) [2/13/94 (Time) 0808/809 Davies Hoove Hydrocarbons 610/8310 Polycyclic Aromatic (Sig) Wildichtuluman BTX 602/8015 ese/8570 (GC/MS) Base/Neutral/Acids 10.1W 602/8020 Relinquished by: Aromatic Volatiles Halogenated Volatiles 601/8010 (Company). (Time). Volatile Organics 624/8240 (GC/MS) Castalist tulburg Matrix Chip Project Number: 00681-089-163 Lee Hatcher the results to 727-3350 Time NA NA Date Please ctall P. Way @ 2/2 Special Instructions/Comments: 420年本が死 Project Manager: -Turn around time: -Laboratory: -Sampler's Initials: -Sampler's Signature: Sample ID UN Kato MCCC-02 MCCC-231

Sample No: Method Blank

Lab Sample ID: R118MB

LIMS ID: 96-21713

Matrix: Concrete

QC Report No: R118-Dames & Moore

Project:

00681-089-163

Date Sampled: NA Date Received: NA

Data Release Authorized:

Reported: 12/17/96

Date extracted: 12/16/96

Date analyzed: 12/16/96

Sample Amount: 30.0 g-as-rec

Final Ext Vol: 10 mL

GPC Cleanup: No

Florisil Cleanup: No

Acid Cleanup: Yes Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/kg as received

CAS Number Analyte		Value	
12674-11-2	Aroclor 1016	33 (U
53469-21-9	Aroclor 1242	33 t	U
12672-29-6	Aroclor 1248	33 T	U
11097-69-1	Aroclor 1254	33 t	U
11096-82-5	Aroclor 1260	33 t	U
11104-28-2	Aroclor 1221	67 t	U
11141-16-5	Aroclor 1232	33 t	U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 80.0% Tetrachlorometaxylene 79.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- NV Indicates no value reportable see additional analyses.
- Y Indicates a raised reporting limit due to matrix interferences.

 The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCCC-01

Lab Sample ID: R118F LIMS ID: 96-21713

Matrix: Concrete

QC Report No: R118-Dames & Moore

Project:

00681-089-163

Date Sampled: Date, Received:

12/13/96

Data Release Authorized: Reported: 12/17/96

12/13/96

Date extracted: 12/16/96 Date analyzed: 12/16/96

GPC Cleanup: No Florisil Cleanup: No

Sample Amount: 30.0 g-as-rec

Acid Cleanup: Yes Sulfur Cleanup: No

Final Ext Vol: 10 mL Conc/Dilution Factor: 1:1

Reported in Total ug/kg as received

CAS Number	Analyte	Value
12674-11-2	Aroclor 1016	880 Y
53469-21-9	Aroclor 1242	880 Y
12672-29-6	Aroclor 1248	S
11097-69-1	Aroclor 1254	S
11096-82-5	Aroclor 1260	S
11104-28-2	Aroclor 1221	67 U
11141-16-5	Aroclor 1232	880 Y

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl NR Tetrachlorometaxylene

- Indicates an estimated value when that result is less than the J calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- NA Indicates compound was not analyzed.
- Indicates no recovery due to interferences.
- NV Indicates no value reportable - see additional analyses.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCCC-01

DILUTION

Lab Sample ID: R118FDIL

QC Report No:

R118-Dames & Moore

LIMS ID: 96-21713 Matrix: Concrete

Project:

00681-089-163

Date Sampled: 12/13/96

Data Release Authorized: Reported: 12/17/96

Date Received: 12/13/96

Date extracted: 12/16/96 Date analyzed: 12/16/96

GPC Cleanup: Florisil Cleanup: No

Sample Amount: 30.0 g-as-rec

Acid Cleanup: Yes Sulfur Cleanup: No

Final Ext Vol:

10 mL

Conc/Dilution Factor: 1:25000

Reported in Total ug/kg as received

CAS Number	Analyte	Value
12674-11-2	Aroclor 1016	830,000 t
53469-21-9	Aroclor 1242	830,000 t
12672-29-6	Aroclor 1248	830,000 t
11097-69-1	Aroclor 1254	830,000 t
11096-82-5	Aroclor 1260	7,200,000
11104-28-2	Aroclor 1221	1,700,000 t
11141-16-5	Aroclor 1232	830,000 t

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl D Tetrachlorometaxylene

- J Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- Indicates compound was not analyzed.
- Indicates no recovery due to interferences.
- NV Indicates no value reportable - see additional analyses.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

18 December 1996

Lee Hatcher Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121 DEC 1 9 1996

DAMES & MOORE
SEATTLE

RE: Client Project: 00681-089-163 ARI Job #R118

Dear Lee:

Please find enclosed the additional results for Sample MCCC-01 from the above referenced project.

As requested, this sample was re-analyzed following an additional 1:5,000 dilution and, from there, another 1:5 dilution for a net dilution factor of 1:25,000. These results are very similar to those that were obtained for the initial analysis. It does not appear that any transcription, entry, calculation, dilution or analytical errors were made during the first analysis.

A copy of this report will be kept on file at ARI. If you have any further questions, please call me any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Mark D. Harris Project Manager 206-340-2866, ext. 113

Enclosures

cc: file #R118

MDH/mdh

Sample No: MCCC-01

Dilution2

Lab Sample ID: R118F-DL2

QC Report No: R118-Dames & Moore

Project:

00681-089-163

Date Sampled:

12/13/96

Date Received: 12/13/96

C4 12/18/2

Data Release Authorized: Reported: 12/18/96

Date extracted: 12/16/96

Date analyzed: 12/17/96

LIMS ID: 96-21713

Matrix: Concrete

GPC Cleanup: No

Florisil Cleanup: No

Sample Amount: 30.0 g-as-rec

Acid Cleanup: Yes Sulfur Cleanup: No

Final Ext Vol: 10 mL

Conc/Dilution Factor: 1:25000

Reported in Total ug/kg as received

CAS Number	Analyte		Value	
12674-11-2	Aroclor :	1016	830,000	U
53469-21-9	Aroclor :	1242	830,000	U
12672-29-6	Aroclor :	1248	830,000	
11097-69-1	Aroclor :	1254	830,000	U
11096-82-5	Aroclor :	1260	7,600,000	
11104-28-2	Aroclor :	1221	1,700,000	U
11141-16-5	Aroclor 1	1232	830,000	U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl

Tetrachlorometaxylene

- Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- S Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out.
- Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates no value reportable see additional analyses. NV
- Indicates a raised reporting limit due to matrix interferences. Y The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCCC-02

Lab Sample ID: R118G

LIMS ID: 96-21714

Matrix: Concrete

QC Report No: R118-Dames & Moore

Project:

00681-089-163

Date Sampled: 12/13/96 Date Received: 12/13/96

Data Release Authorized: Reported: 12/17/96

Date extracted: 12/16/96

Date analyzed: 12/16/96

Sample Amount: 28.4 g-as-rec Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No

Acid Cleanup: Yes Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/kg as received

CAS Number	Analyte	Value
12674-11-2	Aroclor 1016	35 U
53469-21-9	Aroclor 1242	35 U
12672-29-6	Aroclor 1248	35 U
11097-69-1	Aroclor 1254	35 U
11096-82-5	Aroclor 1260	8,100 E
11104-28-2	Aroclor 1221	70 U
11141-16-5	Aroclor 1232	35 U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 87.5% Tetrachlorometaxylene

- Indicates an estimated value when that result is less than the J calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- Indicates no value reported due to saturation of the detector. S
- Indicates the surrogate was diluted out. D
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- NV Indicates no value reportable - see additional analyses.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample No: MCCC-02

DILUTION

QC Report No:

R118-Dames & Moore

Project:

00681-089-163

Date Sampled:

12/13/96

Date Received: 12/13/96

Data Release Authorized: Reported: 12/17/96

Lab Sample ID: R118GDIL

LIMS ID: 96-21714

Matrix: Concrete

Date extracted: 12/16/96

Date analyzed: 12/16/96

Sample Amount: 28.4 g-as-rec Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No Acid Cleanup: Yes

Sulfur Cleanup: No Conc/Dilution Factor: 1:50

Reported in Total ug/kg as received

CAS Number	Analyte	Value
12674-11-2	Aroclor 1016	1,800 U
53469-21-9	Aroclor 1242	1,800 U
12672-29-6	Aroclor 1248	1,800 U
11097-69-1	Aroclor 1254	1,800 U
11096-82-5	Aroclor 1260	6,600
11104-28-2	Aroclor 1221	3,500 U
11141-16-5	Aroclor 1232	1.800 U

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl D Tetrachlorometaxylene

- Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- NA Indicates compound was not analyzed.
- Indicates no recovery due to interferences. NR
- NV Indicates no value reportable - see additional analyses.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

ORGANICS ANALYSIS DATA SHEET PCB by METHOD 8080

Lab Sample ID: R118 LIMS ID: 96-21713 Matrix: Concrete

21713 Pro

QC Report No: R118-Dames & Moore

Project:

00681-089-163

Data Release Authorized:

Reported: 12/17/96

eported: 12/17/36

LABORATORY CONTROL SAMPLE SPIKE RECOVERY

Date extracted: 12/16/96

CONSTITUENT SPIKE SPIKE %
FOUND ADDED RECOVERY

LABORATORY CONTROL SAMPLE

Aroclor 1242

245

333

73.5%

Aroclor Surrogate Recoveries

Decachlorobiphenyl

82.5%

Tetrachlorometaxylene

83.5%

Values Reported in Total ug/kg as received

ANALYTICAL RESOURCES INCORPORATED

TO: BRIAN CUSTRE	Date: 12/19/96
DAMES ! MOVES THE	
500 MARKET PLACE TOWER	
2025 FIRST MUENUE	
Scance, LA 98121	
Submitted by:	
Reference: 00681-089-163	
The following documents are enclosed:	
for your review	
for your approval	
as you requested	
for your information	
Comments:	
	Takal Damas
Sent via:	Total Pages:
First Class	
Express	
Courier	3
FAX No.:	Rev. 2
0023F	02/21/94

0023F

Sample No: MCCC-01

Lab Sample ID: R118F

LIMS ID: 96-21713

Matrix: Concrete

QC Report No: R118-Dames & Moore

Project:

00681-089-163

Date Sampled: 12/13/96 Date Received: 12/13/96

Data Release Authorized:

Reported: 12/17/96

Date extracted: 12/16/96 Date analyzed: 12/16/96

Sample Amount: 30.0 g-as-rec

Final Ext Vol: 10 mL

GPC Cleanup: No

Florisil Cleanup: No

Acid Cleanup: Yes Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

Reported in Total ug/kg as received

CAS Number	Analyte	Value	
12674-11-2	Aroclor 1016	880 Y	
53469-21-9	Aroclor 1242	880 Y	
12672-29-6	Aroclor 1248	S	
11097-69-1	Aroclor 1254	S	
11096-82-5	Aroclor 1260	S	
11104-28-2	Aroclor 1221	67 U	ī
11141-16-5	Aroclor 1232	880 Y	

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl NR
Tetrachlorometaxylene 57.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector.
 Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- NV Indicates no value reportable see additional analyses.
- Y Indicates a raised reporting limit due to matrix interferences.

 The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

2.4 # 5127 E:+# 5125

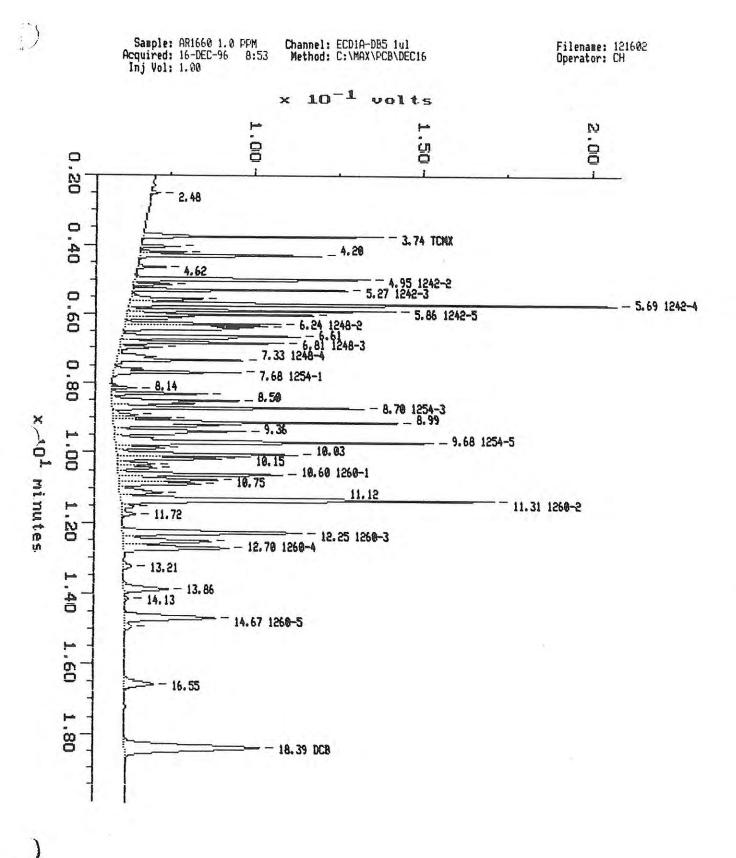
4PB 1212A-03

EXTRACTION - PEST/PCB SOIL

ANALYTICAL RESOURCES INCORPORATED

ARI Job No: R 118

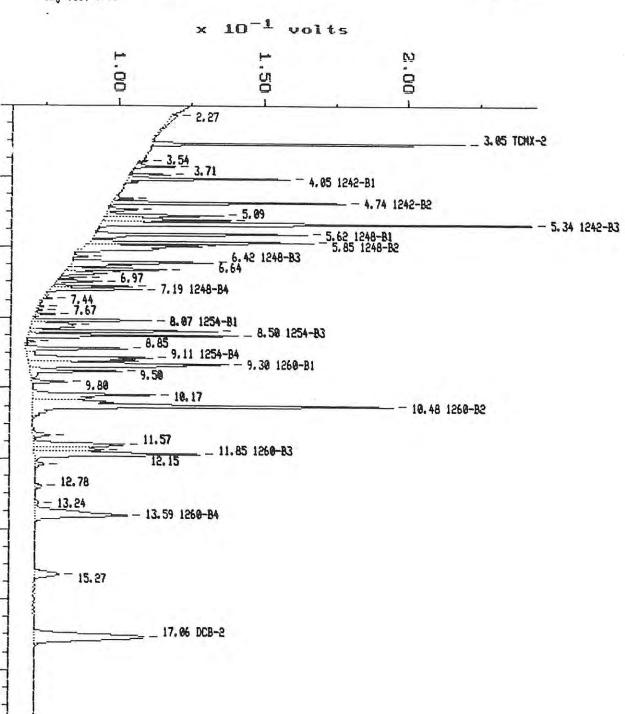
Client Name: D+M.


Acid Client Project: Chau Aliquot Comments: Total Amount GPC Extraction to Lab Aliquot Final Vol. Aliquot Extracted Requirements 9:30 1:10 1.oul Blank Linked to Jobs: 12/16 MB: RU8 mbs 30,009 568/16 **Aliquot** otal **GPC Florisil** Client Amount Comments Final Vol. to Lab Aliquot Lab ID Extracted Aliquot 30.020 Mccco1 R118 F 28.400 500 12/16/16 12:00 PA Date/Analyst: 12/16/96

Florisil Lot #

Surrogate Amount: 2004 Added By: GSA /Spk Withess
Concentration: 2004 Miles Spike Amount: 125 M. Added By: GSA /Spk Witness
Concentration: 2004 Miles

Date: _____


Extraction Storage
Location:

Sample: AR1660 1.0 FPM Acquired: 16-DEC-96 8:53 Inj Vol: 1.00

Channel: ECD1B-DB608 1ul Method: C:\MAX\PCB\DEC16

Filename: 121602 Operator: CH

x_101 minutes

0.20

0,60

0.80

1.00

202

1.40

1.60

1.80

1

F...:IMA (c)1990 Dynamic Solutions, Division of Millipore

MAXIMA 820 CUSTOM REPORT

Printed: 19-DEC-1996 8:48:36

SAMPLE: ARIGGO 1.0 FPM

#7 in Method: PCB ANALYSIS

Acquired: 16-DEC-1996 8:53

Rate: 2.2 points/sec

Duration: 20.000 minutes

Operator: CH

Type: UNKN Instrument: ECD1

Filename: 121602

Index: Disk

Injection Volume: 1.0

DETECTOR: ECDIA-DR5 1ul

Reten	tion Time tes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Component Name
	2.482	0.135	7835	2596			
	3.743	0.204	219231	71520	HGHT	96.6219	TCMX
	4.032	0.219	35287	11492	3.2.0		7.01.11
1	4.195	0.228	40721	13940			
	4.292	0.233	177051	54338	HGHT	0.9343	1242-1
	4.618	0.251	25958	8408		31,75,75	12.2.1
	4.952	0.269	348870	70081	HGHT	0.9503	1242-2
	5,122	0.279	39339	11359	7.00.1	Ci 75Co	ILTE C
	5, 271	0.287	216819	64075	HGHT	0.9421	1242-3
	5.530	0.301	119743	22102	110111	U. JAC1	1242-3
	5.694	0.310	641317	144603	HGHT	0.9427	1242-4
	5.864	0.319	272338	79534	HGHT	0.9350	1242-5
	5.998	0.326	191318	55385	HGHT	0.9111	1248-1
	6.087	0.331	54850	16273	110111	6. 7111	1240-1
	6.242	0.339	168738	46475	HGHT	0.9243	1240-2
	6.324	0.344	272584	42970	110111	0. 7243	1248-2
	6.606	0.359	388527	53094			
	6.813	0.370	203454	48598	HGHT	0.9227	1248-3
	6.962	0.379	48640	12483	110111	W. JEET	1240-3
	7.325	0.398	211594	38016	HGHT	0.9266	1248-4
	7.681	0.418	175242	38315	HGHT	0.8983	1254-1
	8.141	0.443	26972	7522	non	6.0703	1234-1
	B. 297	0.451	116827	28673	HGHT	0.8727	1254-2
	8.497	0.462	235825	38195	non	6.0/2/	1234-2
	8.697	0.473	295895	74842	HGHT	0.8723	1254-3
	8.898	0.484	31065	7008	1,077	O.O.C.	1034 3
	3.994	0.489	64346	17082			
9	9.105	0.495	466426	84735	HGHT	0.9257	1254-4
, 0	365	0.509	237498	39286	1,5,111	017201	1007 7
	9.676	0.526	521774	94661	HGHT	0.9283	1254-5
	847	0.535	66220	14271	Listin	01700	1654 5
	0.032	0.546	268126	53637			
10	1. 151	0.552	145331	31276			
	3.314	0.561	57680	10818			

'AL		5775615	1194554		3.6799	
		1767950	272225	HGHT	Ø.9127	A-1260
		1576165	321225	HGHT	0.9057	A-1254
		775104	188474	HGHT	0.9203	A-1248
		1656396	412631	HGHT	0.9412	A-1242
Group Center (minutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Group Name
GROUP SUMMARY:	ECD1A-DB5 1ul					
TAL		9483009	1858594		295. 2164	
TO.						
18.391	1.000	507711	40391	HGHT	181.1691	DCB
16.552	0.900	86978	8710			
14.935	0.812	14002	1718	1.0.1.	0.7010	1200 3
14.668	0.798	235444	27341	HGHT	0.9045	1260-5
14.126	0.768	7385	979			
13.859	0.754	111156	12957			
13.207	0.718	15809	5355	non1	0.8895	1260-4
12.702	0.691	221524	31303	HGHT	0.0000	120.4
12.509	0.680	185085	26384	HGHT	0.9074	1260-3
12.250	0.666	23609 379003	4007 53500	UDUT	2.000	50.3.3
11.723	0.637	20598	3607			
11.516	0. 615 0.626	676250	111056	HGHT	0.9237	1260-2
11.123	0.605	95522	12488	VIONE	1. 1. 1.	
10.870 11.123	0.591	134754	24446			
10.752	0.585	152904	29560			
10.603	0.577	255729	49025	HGHT	0.9140	1260-1
10.418	0.566	54104	11140			

DETECTOR: ECD1B-DB608 1ul

ion Time es)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Component Name

2.267	0.133	38707	1982			
3.053	0.179	299858	108249	HGHT	94.5872	TCMX-2
3.543	0.208	5639	2443			3,711, 34
3.706	0.217	47345	14023			
3.951	0.232	41511	14124			
4.054	0.238	191669	56222	HGHT	0.9488	1242-B1
4.626	0.271	19244	6206			1242-24
4.737	0.278	293213	80608	HGHT	0.9463	1242-B2
4.922	0.289	42414	10175		233.25-2	10/0 00
5.093	0,299	196876	40878			
	2.267 3.053 3.543 3.706 3.951 4.054 4.626 4.737 4.922 5.093	2.267 0.133 3.053 0.179 3.543 0.208 3.706 0.217 3.951 0.232 4.054 0.238 4.626 0.271 4.737 0.278 4.922 0.289	2.267 0.133 38707 3.053 0.179 299858 3.543 0.208 5639 3.706 0.217 47345 3.951 0.232 41511 4.054 0.238 191669 4.626 0.271 19244 4.737 0.278 293213 4.922 0.289 42414	2.267 0.133 38707 1982 3.053 0.179 299858 108249 3.543 0.208 5639 2443 3.706 0.217 47345 14023 3.951 0.232 41511 14124 4.054 0.238 191669 56222 4.626 0.271 19244 6206 4.737 0.278 293213 80608 4.922 0.289 42414 10175	2.267 0.133 38707 1982 3.053 0.179 299858 108249 HGHT 3.543 0.208 5639 2443 3.706 0.217 47345 14023 3.951 0.232 41511 14124 4.054 0.238 191669 56222 HGHT 4.626 0.271 19244 6206 4.737 0.278 293213 80608 HGHT 4.922 0.289 42414 10175	(ug/sl) 2.267 0.133 38707 1982 3.053 0.179 299858 108249 HGHT 94.5872 3.543 0.208 5639 2443 3.706 0.217 47345 14023 3.951 0.232 41511 14124 4.054 0.238 191669 56222 HGHT 0.9488 4.626 0.271 19244 6206 4.737 0.278 293213 80608 HGHT 0.9463 4.922 0.289 42414 10175

1	13,592 15,268 17,056	0.895 1.000 ECD1B-DB608 1ul	79322 446299 8405553	8606 37731 1674768	HGHT	173.8194 	DCB-2
	13.592 15.268	0.895	446299	37731	HGHT		DCB-2
	13.592 15.268	0.895	446299	37731	HGHT		DCB-2
	13.592 15.268	0.895			HGHT	173, 8194	DCR-2
1	13.592		79322	8606			
	121222	0.171				0.747	TLUE DY
		0.797	325341	31646	HGHT	0.9479	1260-B4
	13.244	0.776	5312	962			
	12.776	0.749	17186	2462			
	12.146	0.712	19272	2959	1011	V+ /L/7	100-03
	11.849	0.695	361397	56934	HGHT	0.9294	1260-B3
	11.723	0.687	123039	23540			
	11.575	0.679	238251	30904			
	11.308	0.663	33636	5607	HOIH	0. 7027	1000-DC
	10, 485	0.615	838777	124318	HGHT	0.9624	1260-B2
13	10.173	0.596	307158	42158			
	9.802	0.575	51858	12184			
	9.498	0.557	146543	31755	HOIT	v. 0/74	1506-81
	9.298	0.545	473222	68640	HGHT	Ø. 8794	1254-B4 1260-B1
	9.113	0.534	318481	42718	HGHT	Ø. 8537	1254-B4
	8.846	0.519	127133	34287			
	8.668	0.508	9444	3189	וחטחו	0.9214	1254-B3
	8.497	0.498	252046	72726	HGHT	0.9050	1254-B2
	8.364	0.490	226355	64799	HGHT	0.0050	1054 00
	8.186	Q. 480	120674	40986 14990	HGHT	0.8788	1254-R1
	8.067	0.463 0.473	151804	6752	UCLO	0.0700	1051 51
	7. 889	0.463	5298 20724	1683			
	7.785	0.449 0.456	9097	1880			
	7.666	0.436 0.449	15132	3282			
	7.436		108308	31740	HGHT	0.8851	1248-B4
	7.095 7.192	0. 416 0. 422	97160	27605	LICHT	0.0004	1010 01
	6,969	Ø. 409	49191	15187			
	6.851	0.402	23176	8485			
	6.732	0.395	56135	14861			
	6.635	0.389	155577	34830			
	6.420	0.376	255307	49533	HGHT	0.9088	1248-B3
	6.257	0.367	15783	4882	Section 1	5 67.3	
	5.953	0.349	309481	40791			
	5.849	0.343	298229	77547	HGHT	0.9191	1248-B2
	5.619	0.329	302423	73262	HGHT	0.9138	1248-B1
	5. 345	0.313	657349	149087	HGHT	0.9380	1242-B3
	5.226	0.306	178157	44350	udie		272-75

GRO

· 'y

•

0 L

roup Center (minutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Group Name
J	**********			-		
		1444654	359180	HGHT	0.9350	A-1242-2
		661844	158819	HGHT	0.9089	A-1248-2
		949687	221229	HEHT	0.8954	A-1254-2

TOTAL

Sample: AR1660 1.0 FPM Acquired: 16-DEC-96 16:47 Inj Vol: 1.00 Channel: ECD1A-D85 1ul Method: C:\MAX\PCB\DEC16 Filename: 121617 Operator: CH 10-1 volts 1.00 50. 50. 0.20 2.47 0.40 3.74 TCMX _ 4.19 4.62 -- 4.95 1242-2 5.26 1242-3 0,60 -- 5.69 1242-4 5.86 1242-5 0.80 7.68 1254-1 8.13 8.50 8.70 1254-3 _ _ 8.99 x-101 minuter 9.36 1.00 - 9.67 1254-5 _ 10.02 10.14 - 10.60 1260-1 10.74 11.12 1.20 11.30 1260-2 11.72 12.24 1260-3 - 12.69 1260-4 13.20 1.40 14.12 14.66 1260-5 1.60 16.54 1.80 18.37 DCB

Sample: AR1660 1.0 PPM Acquired: 16-DEC-96 16:47 Inj Vol: 1.00 Channel: ECD1B-DB608 1ul Method: C:\MAX\PCB\DEC16 Filename: 121617 Operator: CH 10-1 volts 1,00 Ū 50 0,20 2.25 3. 65 TCMX-2 0.40 3.54 3.71 4.05 1242-B1 - 4.74 1242-B2 5. 89 0.60 5.34 1242-R3 5.61 1248-81 5.85 1248-82 6.41 1248-B3 6.96 7.18 1248-B4 0.80 - 8. 66 1254-B1 8.49 1254-B3 8.85 35 _ 9.11 1254-B4 _ 9.29 1260-B1 9.49 9.79 - 18.17 - 10.48 1260-R2 11.57 1.20 11.84 1260-B3 _ 12.76 13, 23 1.40 13.58 1269-B4 15.26 1.60 17.04 DCB-2 1.80

MAXIMA (c)1990 Dynamic Solutions, Division of Millipore

MAXIMA 820 CUSTOM REPORT

Printed: 19-DEC-1996 8:48:59

Type: UNKN

Instrument: ECD1

Injection Volume: 1.0

Filename: 121617

Index: Disk

SAMPLE: ARIGGO 1.0 PPM

#22 in Method: PCB ANALYSIS

Acquired: 16-DEC-1996 16:47

Rate: 2.2 points/sec

Duration: 20.000 minutes

Operator: CH

"ETECTOR: ECDIA-DB5 1ul

	ention Time nutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Component Name
	2.475	0.135	7865	2522			/
	3.736	0.203	231856	74720	HGHT	101.1499	TCMX
	4.032	0.220	38012	12155			TOTAL
j	4.188	0.228	43611	14447			
	4.284	0.233	186152	57331	HGHT	0.9986	1242-1
	4.618	0.251	27645	8917			10.00
	4.952	0.270	368130	74731	HGHT	1.0289	1242-2
	5.122	0.279	42016	12257		202627	
	5.263	0.287	230224	67682	HGHT	1.0053	1242-3
	5.530	0.301	131703	23764	Crient.		44.4
	5.686	0.310	689489	154724	HEHT	1.0212	1242-4
	5.864	0.319	297719	85660	HGHT	1.0202	1242-5
	5.990	0.326	270681	61106	HGHT	1.0162	1248-1
	6.242	0.340	179506	51101	HGHT	1.0332	1248-2
	6.324	8.344	384478	47378			
	6.606	0.360	331753	57750			
	6.813	0.371	225402	53380	HGHT	1.0237	1248-3
	6.962	0.379	54172	13677			777
	7.318	0.398	232044	41303	HGHT	1.0167	1248-4
	7.681	0.418	190037	42592	HGHT	1.0153	1254-1
	8.134	0.443	33952	8953			
	8.297	0.452	132330	32354	HGHT	0.9992	1254-2
	8.497	0.463	269373	43071		200	3001.3
	8.697	0.473	318827	82153	HGHT	0.9741	1254-3
	8.898	0.484	25273	6688		and the state of t	071.7
	8.994	0.490	62850	17183			
	9.105	0.496	482542	88901	HGHT	0.9782	1254-4
	9.357	0.509	238268	40650			
\	9.669	0.526	537699	99023	HGHT	8.9761	1254-5
)	9.847	0.536	65827	14596			
	10.025	0.546	277535	56832			
	10.144	0.552	151338	32998			
	10.307	0.561	56647	11147			
	10.411	0.567	53659	11291			

NL.		1661435 1888568 6229351	345023 290774 1282815	HGHT HGHT	0.9830 0.9808 4.0027	A-1254 A-1260
		1771715 907633	440128 206890	HGHT HGHT	1.0168	A-1242 A-1248
Broup Center	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Group Name
ROUP SUMMARY: E	CD1A-D85 lul					
Jr.		10127636	1973401		316.5384	
10,007	1,000			חטחו	196.3926	DCB
18.369	1.000	540979	43384	HGHT	107 2057	non
16.537	0.900	94845	1998 9163			
14.912	0.812	255433 16811	29741	HGHT	0.9896	1260-5
14.660	0.769 0.798	8184	1081	LIGHT PER	g 101c	22.2 0
13.852 14.119	0.754	121363	14073			
13.199	0.719	17788	2591			
12.695	0.691	240095	33738	HGHT	0.9645	1260-4
12.502	0.681	201618	28801			
12.242	0.666	407026	56942	HGHT	0.9702	1260-3
11.715	0.638	25856	4389			
11.508	0.627	20957	3971			
11.301	0.615	719375	118480	HGHT	0.9923	1560-5
11.115	0.605	99432	13171			
10.863	0.591	142293	25610			
10.744	0.585	160327	51873 31357	HGHT	0.9724	1260-1

	ention Time nutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Component Name
-							
	2.252	0.132	27190	1340			
	3.053	0.179	316169	114366	HGHT	100.7444	TCMX-2
	3.543	0.208	6769	2612			
	3.706	0.217	48331	14470			
	3.951	0.232	43316	14610			*
	4.054	0.238	201176	58284	HGHT	0.9985	1242-B1
1	4.626	0.271	15988	5992			200.00
)	4.737	0.278	302646	83279	HGHT	0.9912	1242-B2
	4.915	0.288	45862	10947		6.12.00	22.07
	5.093	0.299	207483	43190			
	5, 226	0.307	187142	46983			

5.338	0.313	686573	155508	HGHT	0.9878	1242-B3
5.612	0.329	325701	77130	HGHT	0.9731	1248-B1
5.849	0.343	325601	82031	HGHT	0.9811	1248-B2
5.953	0.349	331082	43874			
6.250	0.367	17763	5454			
6.413	0.376	276853	52906	HGHT	0.9788	1249-B3
6.628	0.389	167028	37843			22.2.22
6.724	0.395	63559	16097			
6.851	0.402	25894	9213			
6.962	0.409	55193	16721			
7.095	0.416	105918	30550			
7.184	0.422	121965	35357	HGHT	1.0009	1248-B4
7.429	0.436	12307	3046			36.6 27
7.659	0.449	4652	1775			
7.778	0.456	6317	1972			
7.889	0.463	24162	7714			
8.059	0.473	170782	45682	HGHT	0.9916	1254-B1
8.178	0.480	138904	17401			1007 11
8.364	0.491	254242	70468	HGHT	0.9942	1254-B2
8.490	0.498	277586	80769	HGHT	1.0353	1254-B3
8.660	0.508	10365	3473	1,0171	1, 0000	1004 00
8.846	0.519	143527	37135			
9.113	0.535	356959	46540	HGHT	0.9425	1254-B4
9.291	8.545	506589	73355	HGHT	0.9459	1260-B1
9.491	0.557	158733	34417			ILUU DI
9.795	0.575	58005	13035			
10.166	0.597	329771	44834			
10.485	0.615	906322	133220	HGHT	1.0384	1260-B2
11.301	0.663	36977	6199	110111	1,0007	TEGO DE
11.575	0.679	266608	33786			
11.723	0.688	125525	25907			
11.842	0.695	395512	61559	HGHT	1.0125	1260-B3
12.139	0.712	22531	3231	114.17	170100	1200 00
12.762	0.749	18477	2729			
13,229	0.776	7632	1093			
13.585	0.797	352935	33563	HGHT	1,0100	1260-B4
15.261	0.896	86769	9495	TIGH!	1,0100	1200 04
17.041	1.000	486062	41968	HGHT	196.0988	DCB-2
		9063452	1793122		311.7248	
		4444	121/1/4/2017		044.7270	

_.: OUP SUMMARY: ECDIB-DB608 1ul

ITAL

oup Center inutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Group Name
.7						
1		1516096	374202	HGHT	0.9856	A-1242-2
		724418	170294	HGHT	0.9845	A-1248-2
		1059569	243458	HGHT	0.9970	A-1254-2
		2161359	301696	HGHT	1.0062	A-1260-2

TOTAL

5461442

1089650

3.9733

Sample No: Method Blank

Lab Sample ID: R118MB

LIMS ID: 96-21713

Matrix: Concrete

QC Report No: R118-Dames & Moore

Project:

Date Sampled:

00681-089-163

NA Date Received:

Data Release Authorized:

Reported: 12/17/96

Date extracted: 12/16/96 Date analyzed: 12/16/96

Sample Amount: 30.0 g-as-rec

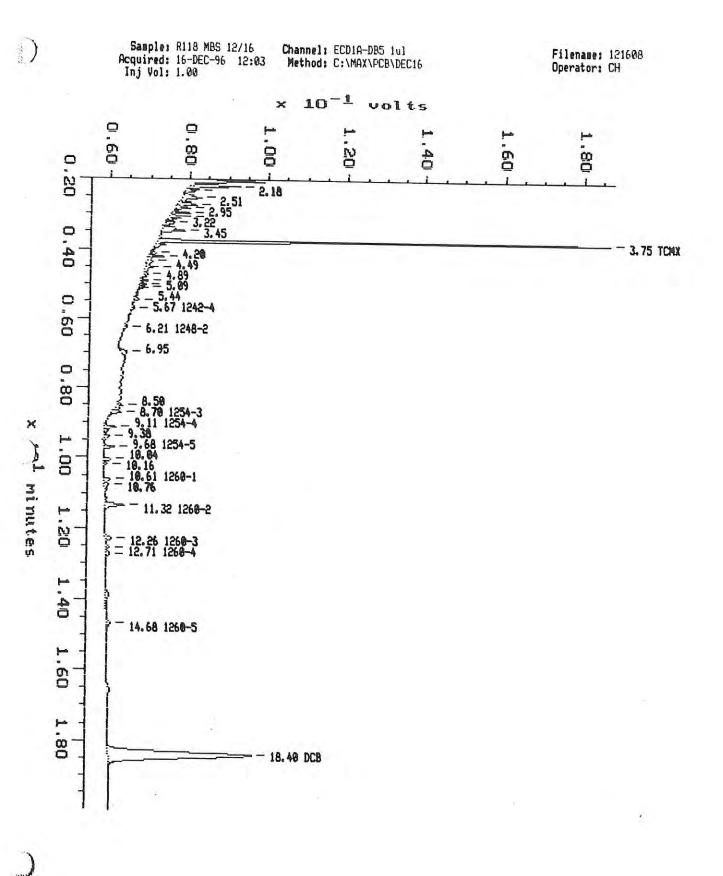
Final Ext Vol:

GPC Cleanup: No

Florisil Cleanup: No Acid Cleanup: Yes

Sulfur Cleanup: No

Conc/Dilution Factor: 1:1


Reported in Total ug/kg as received

CAS Number	Analyte	Value
12674-11-2	Aroclor 1016	33 (
53469-21-9	Aroclor 1242	33 (
12672-29-6	Aroclor 1248	33 T
11097-69-1	Aroclor 1254	33 t
11096-82-5	Aroclor 1260	33 t
11104-28-2	Aroclor 1221	67 t
11141-16-5	Aroclor 1232	33 (

PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 80.0% Tetrachlorometaxylene 79.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- NV Indicates no value reportable - see additional analyses.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

Sample: R118 MBS 12/16 Acquired: 16-DEC-96 12:03 Inj Vol: 1.00 Channel: ECD1B-DB608 1ul Method: C:\MAX\PCB\DEC16 Filename: 121608 Operator: CH 10-1 volts 20.00 0,20 - 2.12 _ 3.06 TCMX-2 0.40 5.89 0.60 5.83 1248-B2 7.87 0.80 = 8.37 1254-82 - 9.31 126**0-**81 - 9.65 1.00 10.17 - 10.49 1260-B2 tm. 1.20 _ 11.86 1260-B3 1,60 17.06 DCB-2 1.80

Mi IMA (c)1990 Dynamic Solutions, Division of Millipore

MAXIMA 820 CUSTOM REPORT

Printed: 16-DEC-1996 14:06:30

SAMPLE: R118 MBS 12/16

#13 in Method: PCB ANALYSIS

Acquired: 16-DEC-1996 12:03

Rate: 2.2 points/sec

Duration: 20.000 minutes

Operator: CH

Type: UNKN

Instrument: ECD1

Filename: 121608

Index: Disk

Injection Volume: 1.0

DETECTOR: ECDIA-DB5 1ul

	tention Time inutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Component Name
	2.178	0.118	44665	12339	-		***************************************
	2.289	0.124	13622	3253			
	2.512	0.137	36538	4873			
1	2.719	0.148	21828	4974			
1	2.808	0.153	10986	3664			
	2.949	0.160	13651	4636			
	3.053	0.166	18780	5215			
	3.224	0.175	13261	2388			
	3.446	0.187	32539	5832			
	3.750	0.204	341969	115016	HGHT	158.1523	TCMX)
	4.106	0.223	5105	1469	1,0111	100.1000	TOTA
	4.203	0.228	12715	3666			
	4.336	0.236	7235	1313	HGHT	Invalid	1242-1
	4.492	0.244	15237	2805	7,6477	1,1111111111111111111111111111111111111	ILIL I
	4.700	8.255	7894	1085			
	4.885	0.266	5153	1647			
	4.996	0.272	6707	1733	HGHT	Invalid	1242-2
	5.085	0.276	12864	2075	7,5,7,1		ILIL L
	5.441	0.296	4203	1185			
	5.671	0.308	3282	579	HGHT	Invalid	1242-4
	6.205	0.337	2910	695	HGHT	Invalid	1248-2
	6.954	0.378	8466	1446	1,0177	111/0110	ILTO L
	8.504	0.462	15397	1516			
	8.705	0.473	10736	2418	HGHT	Invalid	1254-3
	9.113	0.495	12319	2590	HGHT	Invalid	1254-4
	9.380	0.510	6805	1293	,,,,,,		ILD1 1
	9.684	0.526	10794	2542	HGHT	0.0038 L	1254-5
	10.040	0.546	7073	1709			
	10.158	0.552	3090	802	ŧ		
1	10.611	0.577	7306	1543	HGHT	0.0119 €	1260-1
,	10.759	0.585	8194	929		1100397	
	11.323	0.615	29938	4736	HGHT	0.0189 €	1260-2
	12.257	0.666	10745	1589	HGHT	0.0199	1260-3
	12.517	0.680	4754	769			1000000

12.710	0.691	5676	923	HGHT	0.0252	1260-4
14.675	0.798	14326	722	HGHT	0.0254	
18.398	1.000	457701	36141	HGHT	159.9290	1260-5 DCB
OTAL		1244468	242111		318. 1863	
GROUP SUMMARY: EC	CD1A-DB5 1ul					
Group Center (minutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Group Name
		17224	3625	HGHT	0.0000	A-1242
		2910	695	HGHT	0.0000	A-1248
		33850	7550	HGHT	0.0000	A-1254
		67992	9514	HGHT	0.0192	A-1260
DTAL		121976	21384		0.0192	
ETECTOR: ECD1B-D	8608 1ul					
Retention Time (minutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Component Nam
2.119	0.124	41008	8011			
2.289	0.134	92464	12883			
2.527	0.148	70648	11974			
2.808	0.165	18201	4313			
3.061	0.179	524960	172542	HGHT	163.3317	TOUV O
3.328	0.195	36868	3498	non	103.3317	TCMX-2
3.550	0.208	56362	5773			
3.854	0.226	45624	5640			
4.158	0.244	30133	5379			
4.277	0.251	17176	3495			
4.514	0.265	9201	2096			
5.085	0.298	6093	2080			
5.827	0.342	17293	1586	HGHT	Invalid	1248-R2
7.066	0.414	10576	1617	110111		ILTO IL
8.371	8.491	4903	1225	HGHT	0.0073	1254-B2
8.497	0.498	6218	1851	HGHT	0.0068	1254-B3
9.305	0.546	11492	1668	HGHT	Invalid	1260-B1
9.647	0.566	13107	1750	risetti.	11111111	ILOU BI
10.173	0.596	3817	1081	*		
10.492	0.615	19893	4245	HGHT	0.0113	1260-B2
11.864	0.696	25332	1834	HGHT	0.0208	1260-B3
17.056	1.000	409892	35129	HGHT	160.3762	DCB-2
1. 3						

IROUP SUPMARY: ECD18-DB608 1ul

Group Center (sinutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Group Name
				-		
		0	0	HGHT	0.0000	A-1242-2
		17293	1586	HGHT	0.0000	A-1248-2
		11121	3075	HGHT	0.0000	A-1254-2
		56716	7747	HGHT	0.0070	A-1260-2
C F		85131	12409		0.0070	

ORGANICS ANALYSIS DATA SHEET PCB by METHOD 8080

Lab Sample ID: R118 LIMS ID: 96-21713 Matrix: Concrete

QC Report No: R118-Dames & Moore

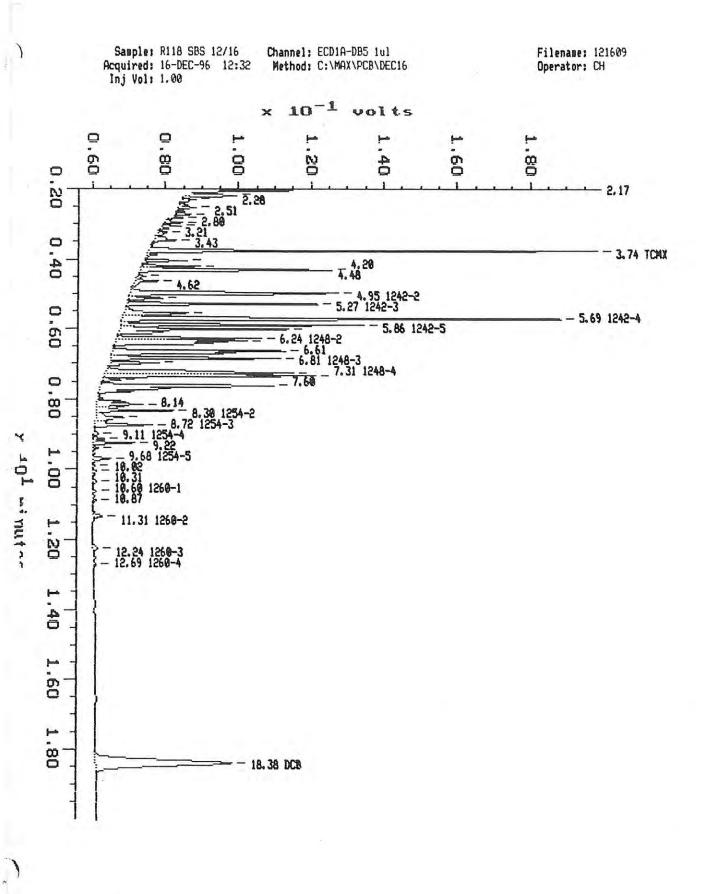
Project:

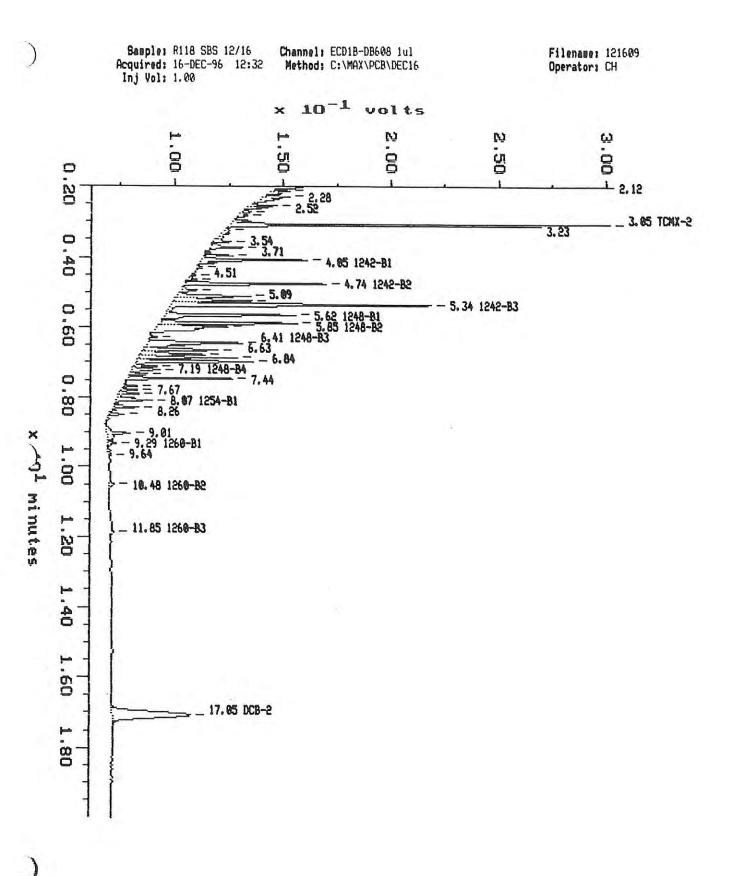
00681-089-163

Data Release Authorized: Reported: 12/17/96

LABORATORY CONTROL SAMPLE SPIKE RECOVERY Date extracted: 12/16/96

CONSTITUENT SPIKE SPIKE & RECOVERY


LABORATORY CONTROL SAMPLE


Aroclor 1242 245 333 73.5%

Aroclor Surrogate Recoveries

Decachlorobiphenyl 82.5% Tetrachlorometaxylene 83.5%

Values Reported in Total ug/kg as received

* IMA (c)1990 Dynamic Solutions, Division of Millipore

MAXIMA 820 CUSTOM REPORT

Printed: 16-DEC-1996 14:06:52

SAMPLE: R118 SBS 12/16

#14 in Method: PCB ANALYSIS

Acquired: 16-DEC-1996 12:32

Rate: 2.2 points/sec

Duration: 20.000 minutes

Operator: CH

Type: UNKN

Instrument: ECD1

Filename: 121609

Index: Disk

Injection Volume: 1.0

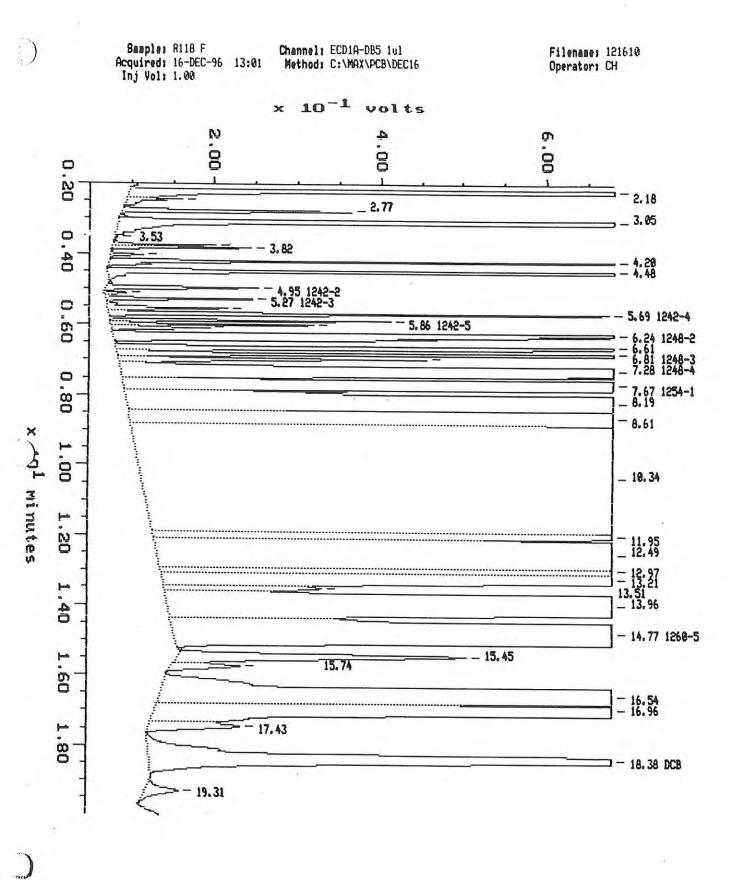
	ntion Time utes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Component Name
	2.171	0.118	49193	13468		***************************************	
	2.282	0.124	15310	3740			
	2.512	0.137	29909	4993			
1	2,712	0.148	15286	4193			
,	2.801	0.152	8636	3266			
	2.942	0.160	14589	5035			
	3.038	0.165	19518	5458			
	3.209	0.175	13133	2482			
	3.431	0.187	32476	6250			
	3.743	0.204	380119	123296	HGHT	169.8641	(TCMX 147)
	4.032	0.219	38495	12003	3.00.1	10770071	(norm
	4.195	0.228	46899	16021			~
	4.284	0.233	172794	52388	HGHT	0.8930	1242-1
	4.485	0.244	9222	2486		21,7172	12.2
	4.618	0.251	27835	6558			
	4.952	0.269	292943	57282	HGHT	0.7432	1242-2 6.7791
	5. 122	0.279	35193	9428	4.5		
	5.271	0.287	176597	52254	HGHT	0.7418	1242-3
	5.530	0.301	96199	17598			
	5.694	0.310	531972	119935	HGHT	0.7574	1242-4
	5.864	0.319	225415	66556	HGHT	0.7600	1242-5 (0.734
	5.990	0.326	195836	46463	HGHT	0.7509	1248-1
	6.242	0.340	139341	39538	HGHT	0.7661	1248-2
	6.324	0.344	214870	35815			
	6.606	0.359	276197	47173			
	6.813	0.371	185158	46459	HGHT	0.8780	1248-3
	6.962	0.379	50568	13558			100 mg - 100
	7.236	0.394	267066	51660			
	7.310	0.398	206709	57837	HGHT	1.4864	1248-4
	7.436	0.405	19185	4892			
,	7.600	0.414	276377	47252			
	8.141	0.443	98575	12620			
	8.304	0.452	75014	21248	HGHT	0.6261	1254-2
	8.512	0.463	48196	7896			-50

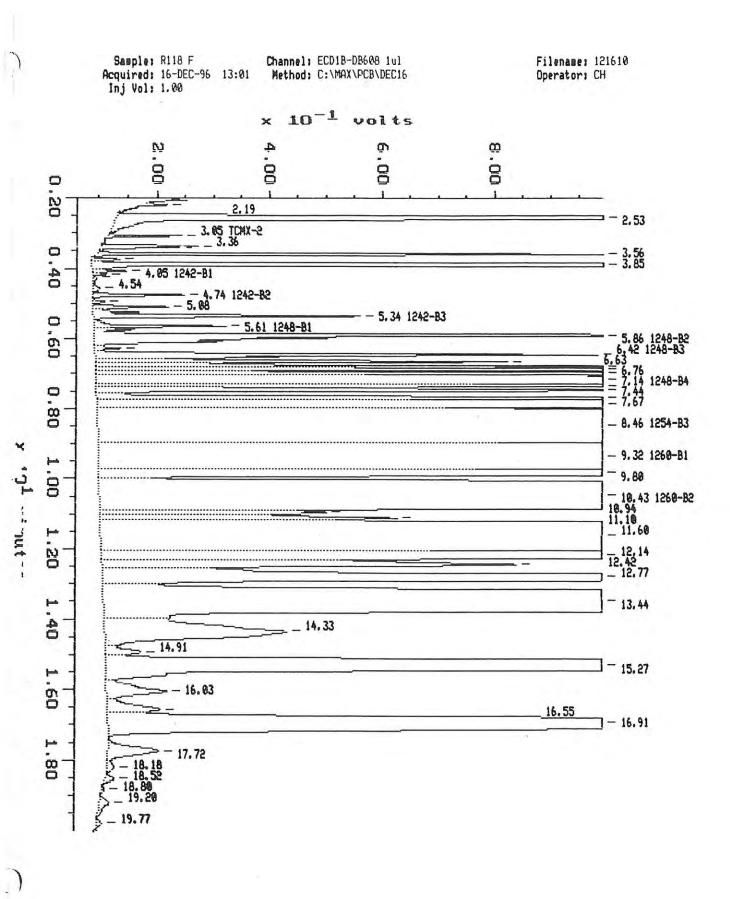
1A-DB5 1u1		*			
10 DDF 1 1					
	4958138	1099700		344.7906	
1.000	468920	37434	HGHT	166.3466	DCB 145
					1260-4
				0.0097	1260-3
			HGHT	0.0010	1260-2
	2896	727			
0.577	3493	799	HGHT	Invalid	1260-1
0.561	5244	1102			
0.546	6382	1050			
0.536	1867	467			5753 3
0.527	20776	4639	HGHT	0.0230	1254-5
0.510	4603				
0.502				1/// 0110	1007. 1
			HGHT	Invalid	1254-4
			110111	0.12.70	ILUY 3
0.475	71490	15400	UCUT	0 1200	1254-3
	0.510 0.527 0.536 0.546 0.561	0.487 7357 0.495 10784 0.502 44591 0.510 4603 0.527 20776 0.536 1867 0.546 6382 0.561 5244 0.577 3493 0.592 2896 0.615 14122 0.666 6024 0.691 4764 1.000 468920	0.487 7357 1186 0.495 10784 3121 0.502 44591 11323 0.510 4603 1196 0.527 20776 4639 0.536 1867 467 0.546 6382 1050 0.561 5244 1102 0.577 3493 799 0.592 2896 727 0.615 14122 2445 0.666 6024 958 0.691 4764 468 1.000 468920 37434	0. 487 7357 1186 0. 495 10784 3121 HGHT 0. 502 44591 11323 0. 510 4603 1196 0. 527 20776 4639 HGHT 0. 536 1867 467 0. 546 6382 1050 0. 561 5244 1102 0. 577 3493 799 HGHT 0. 592 2896 727 0. 615 14122 2445 HGHT 0. 666 6024 958 HGHT 0. 691 4764 468 HGHT 1. 000 468920 37434 HGHT	0. 487 7357 1186 0. 495 10784 3121 HGHT Invalid 0. 502 44591 11323 0. 510 4603 1196 0. 527 20776 4639 HGHT 0.0230 0. 536 1867 467 0. 546 6382 1050 0. 561 5244 1102 0. 577 3493 799 HGHT Invalid 0. 592 2896 727 0. 615 14122 2445 HGHT 0.0010 0. 666 6024 958 HGHT 0.0097 0. 691 4764 468 HGHT 0.0132 1. 000 468920 37434 HGHT 166.3466

Group Center (minutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Group Name
-		-			-	***********
		1399728	348414	HGHT	0.7782	A-1242
		727044	190298	HGHT	0.9303	A-1248
		178064	44700	HGHT	0.0893	A-1254
		28403	4670	HGHT	0.0039	A-1260
TOTAL		2333232	588082		1.7939	

DETECTOR: ECD18-DB608 1ul

	tention Time inutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Component Name
-		9900000000000			*****		-
	2.119	0.124	40819	7969			
	2.282	0.134	88478	12023			
	2.519	0.148	57314	12348			
	2.705	0.159	17615	4350			
4	2.801	0.164	56656	4510			
	3.053	0.179	527988	175599	HGHT	166.8226	TCMX-2
	3.231	0.190	36855	2261			
	3.543	0.208	24800	7899			
10%	3.706	0.217	61061	15282			
1	3.951	0.232	37841	13445			
-	4.054	0.238	179039	48738	HGHT	0.7777	1242-B1v
	4.270	0.250	10447	2656		271,057 %	45.5
	4.507	0.264	10202	2391			1


1248


		4869483	1136005		337.0559	
17.048	1.000	416666	36039	HGHT	165. 0580	DCB-5
11.849	0.695	5181	1003	HGHT	0.0082	1260-B3
10.485	0.615	13383	2301	HGHT	Invalid	1260-B2
9.639	0.565	7571	846			
9.291	0.545	20495	3749	HGHT	0.0196	1260-B1
9.009	0.528	76024	10724			
8.482	0.498	23191	6586	HGHT	0.0629	1254-B3
8.260	0.484	43903	11974			
8.074	0.474	80678	16232	HGHT	0.3266	1254-B1
7.889	0.463	28581	9164			
7.785	0.457	25840	7140			
7.666	0.450	18826	6290			
7.436	0.436	156524	48007			
7.318	0.429	23510	7696			
7.192	0.422	53660	12785	HGHT	0.3171	1248-B4
7.095	0.416	36554	10442			
6.962	0.408	189872	54161			
6.843	0.401	152053	45404			
6.754	0.396	123301	30180			
6.628	0.389	156325	35012			75.50.55
6.413	0.376	237859	44204	HGHT	0.8002	1248-B3
6.250	0.367	10057	3411			
5.953	0.349	238197	32884			
5.849	0.343	243885	62884	HGHT	0.7219	1248-B2
5.619	0.330	25@681	59810	HGHT	0.7145	1248-B1
5.338	0.313	530509	120060	HGHT	0.7213	1242-B3
5.226	0.307	143042	36155			1
5.093	0.299	164353	34187			
4.915	0.288	35915	7565			
4.737	0.278	236527	65264	HGHT	0.7054	1242-B2 \
4.618	0.271	13836	4376			

ROUP SUMMARY: ECD18-DB608 1ul

TOTAL

Group Center	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Group Name
-		-	-			******************
		1196755	293872	HGHT	0.7247	A-1242-2
		535403	119872	HGHT	0.6607	A-1248-2
		103869	22818	HGHT	0.0676	A-1254-2
		39059	7054	HGHT	0.0048	A-1260-2
			Santana and			
0 L		1875087	443616		1.4577	

M IMA (c)1990 Dynamic Solutions, Division of Millipore

MAXIMA 820 CUSTOM REPORT

Printed: 16-DEC-1996 14:07:18

SAMPLE: R118 F

#15 in Method: PCB ANALYSIS

Acquired: 16-DEC-1996 13:01

Rate: 2.2 points/sec

Duration: 20.000 minutes

Operator: CH

Type: UNKN

Instrument: ECD1 Filename: 121610

Index: Disk

Injection Volume: 1.0

	tention Time inutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Component Name
-	2.178	0.119)6813656) 983225		***********	
	2.445	0.133	346772	67709			
	2.771	0.151	1043186	276017			
1	3.046	0.166	7459741)914982			
1	3.528	0.192	9919	2493			
	3.743	0.204	352369	123194	HGHT	169.7202	TCMX 114
	3.817	0.208	547695	166096	A.07****	4441545	(""
	4.025	0.219	124067	37916			
	4.195	0.228) 3147038) 925377			
	4.477	0.244	>5694278	>927767			
	4.952	0.269	866332	183349	HGHT	3.3667	1242-2
	5.122	0.279	109453	26020		2, 2, 2,	
	5.271	0.287	649525	175395	HGHT	3.3502	1242-3
	5,530	0.301	625271	144420	0.0000	2,000	
	5.686	0.309	2646409	600903	HGHT	5.8901	1242-4
	5,864	0.319	1124694	337552	HGHT	6.0190	1242-5
	5.990	0.326	820119	243340	HGHT	5.3597	1248-1
	6.087	0.331	394102	118776		213234	47.7
	6.242	0.340)8445242) 921221	HGHT	>69.4289	1248-2
	6.606	0.359) 5374474) 918034			2517.5
	6.806	0.370) 4225098) 916278	HGHT) 43. 7264	1248-3
	6.962	0.379	1649507	372431			
	7.281	0.396) 16688364)912116	HGHT)64.3507	1248-4
	7.674	0.418) 16446220) 908669	HGHT) 85.5508	1254-1
	8.193	0.446	>25184494)984117			
	8.608	0.468	>21128813) 900475			
	10.336	0.562) 1617@3238) 885323			
	11.946	0.650	>8415733)871210			
	12.487	0.680	142296910) 866463			
)	12.969	0.706)7702106) 862236			
7	13.207	0.719) 16606677) 860155			
	13.511	0.735	1422833	189030			
	13.963	0.760	32995291) 853521			
	14.772	0.804	34057747) 846433	HGHT)86.3313	1260-5

15.446	0.841	3647721	349371	
15.736	0.856	781295	84430	
16.544	0.900) 24819266)863910	
16.959	0.923) 17074152) 869301	
17.434	0.949	1214182	109899	
18.376	1.000) 14483659) 875206	
19.311	1.051	565772	39713	

18941223

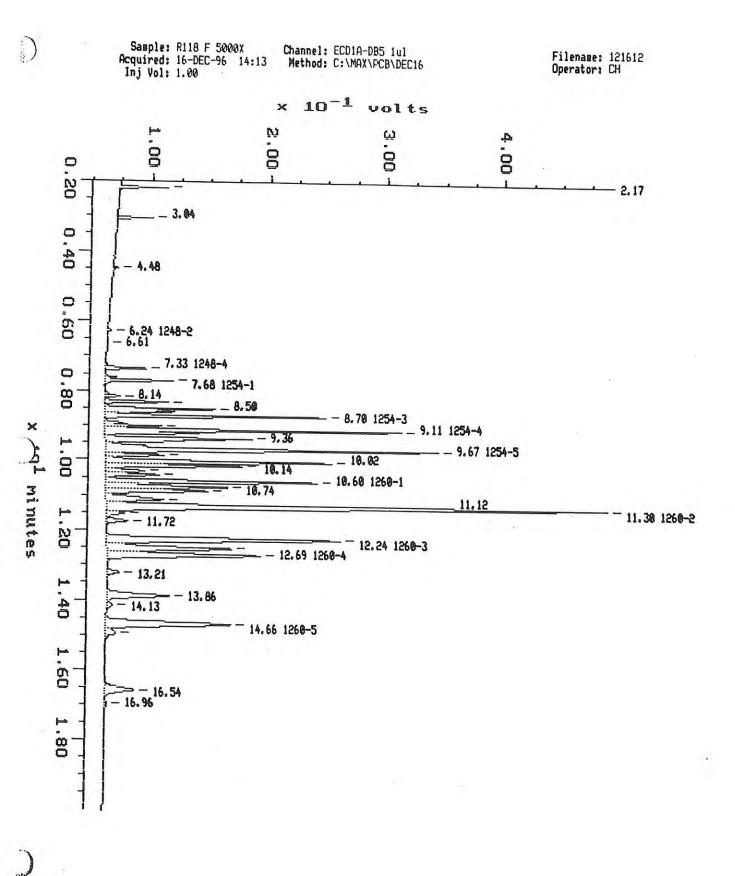
HGHT) 12888.42@9

193.7059

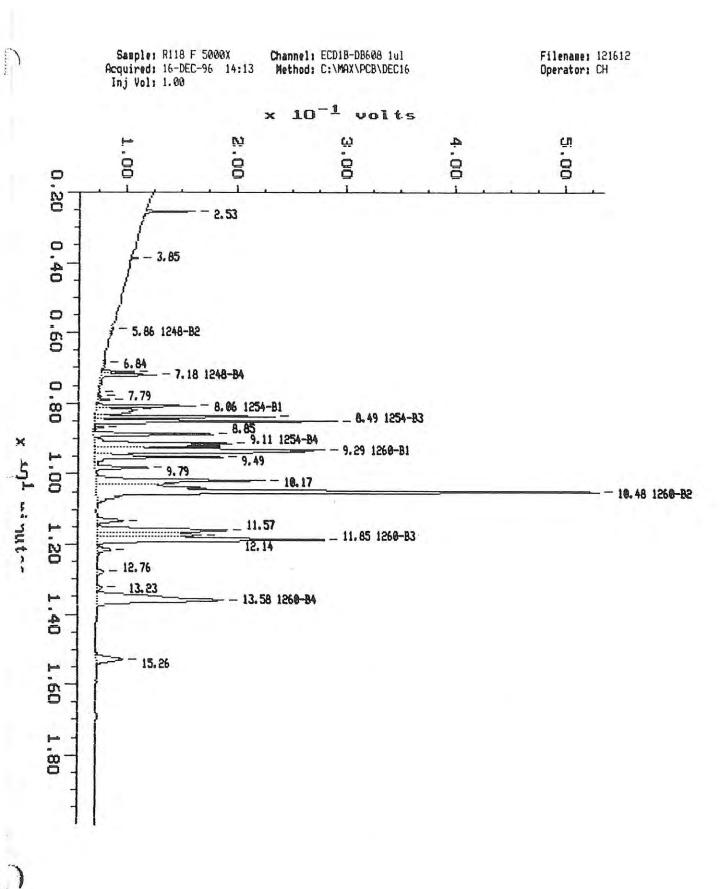
DCB NR

TOTAL

GROUP	SUMMARY 1	ECD1A-DB5	1ul


Group Center (minutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc	Group Name

		5286960	1297200	HGHT	4.0981	A-1242 5 2.63347
) 820119) 243340	HGHT	Invalid	A-1248
		>0	>0	HGHT	Invalid	A-1254
		>0	>0	HGHT	Invalid	A-1260
il 4						A Age A. M.
Dr.)6107079) 1540539		14.0981	


3648054

DETECTOR: ECD1B-DB608 1ul

Retention Tise (minutes)	Relative Time	Peak Area	Peak Height	Base	Solution Cone (ug/ml)	Component Name
2.185	0.716	120145	42180		*************	
2.534	0.830	>8031779) 870154			
3.053	1.000	332165	127265	HGHT	113.9934	TCMX-2
3.357	1.100	731914	169149	110(1)	113, 7734	ICHA-2
3.565	1.168	>2924190) 903514			
3.721	1.219	191646	46511			
3.854	1.262	>5782137)911393			
4.054	1.328	212746	57157	HGHT	0.9712	1242-Bi
4. 151	1.360	81962	24773	1.0.11	0.21.12	ILAE DI
4.262	1.396	45284	7275			
4.544	1.488	106510	11479			1/2.637
4.737	1.551	662194	160776	HGHT	2.6714	1040 00 //
4.930	1.615	88496	20565	3.55,7		124
5.078	1.663	599749	129282			/ . /
5.338	1.748	2377221	471090	HGHT	4.2575	1242-R3
5.612	1.838	913076	231106	HGHT	4.0278	1248-B1
5.864	1.921	17931130) 907282	HGHT) 25. 5437	1248-B2
6.250	2.047	187878	44216	7.5	7 257 5 757	LIO L
6.420	2.103	4605397	888555	HGHT	49.7077	1248-B3
6.628	2.171	3422718	729752	2277	10.14.1	1210 20
6.762	2.215) 4255705) 905095			

		4 4 2 3 3 3 2 3 3	1 2 2 2 2 1 1			
6.843	2.241) 4811868) 904896			
6.954	2.278) 4698676) 904625			
7.140	2.338	14137677	>904173	HGHT	}97.3449	1248-B4
7.310	2.394) 4654458	1903757			
7.436	2.436)5494919) 903450			
7.666	2.511	>5724918)902889			
7.844	2.569) 12563459) 902456			
8.460	2.771	>53145352	1900956	HGHT	23.4629	1254-R3
9.320	3.053) 40527699) 898859	HGHT)20.9151	1260-B1
9.802	3.211	111246320) 897684			
10.425	3.415) 46102253)896166	HGHT	10.4064	1260-B2
10.937	3.582	2713967	397632			
11.100	3.636	3420672	523323			
11.597	3.798) 45756831	>893310			
12.139	3.976) 13464495	>891991			
12.420	4.868	7184527	731486			
12.769	4.182) 15597589) 890454			
13.444	4.403	39091604) 888889			
14.334	4.695	8129473	322566			
14.912	4.884	611891	60061			
15.268	5.001)21945615) 884363			
16.032	5.251	1663881	105099			
16.552	5.421	1260068	91189			
16.915	5.540) 22688455) 880351			
17.723	5.805	1397180	86952			
18.183	5.956	148874	10859			
18.517	6.065	150805	15699			
18.799	6.157	32443	4392			
19.199	6.288	282751	16315			
19.770	6.475	25028	6610			
17.770	0.473	EJOCO	0010			
(X		41612664	5533315		175.6290	
TROUP SUMMARY: E	CD1B-DB6@8 1ul					
Group Center	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/sl)	Group Name
*		4165236	920129	HGHT	3.4011	A-1242-2
) 4605397) 888555	HGHT	Invalid	A-1248-2
)0)0	HGHT	Invalid	A-1254-2
		>0	>0	HGHT	Invalid	A-1260-2

W... MA (c) 1990 Dynamic Solutions, Division of Millipore

MAXIMA 820 CUSTOM REPORT

Printed: 16-DEC-1996 15:43:40

SAMPLE: R118 F 5000X

#17 in Method: PCB ANALYSIS

Acquired: 16-DEC-1996 14:13

Rate: 2.2 points/sec

Duration: 20.000 minutes

Operator: CH

Type: UNKN

Instrument: ECD1

Filename: 121612

Index: Disk

Injection Volume: 1.0

	ention Time nutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Cosponent Name
	2.171	0.128	94427	39922			
	3.038	0.179	79849	30561			
	4.477	0.264	12940	4410			
4	6.242	0.368	6969	2160	HGHT	0.0178	1248-2
-	6.606	0.390	1921	505		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	7.325	0.432	126643	33777	HGHT	0.8122	1248-4
	7.681	0.453	243856	58854	HGHT	1.4628	1254-1
	8.141	0.480	50840	13143			525.12
	8.297	0.489	220406	53257	HGHT	1.7711	1254-2
	8.497	0.501	553266	93038	,,_,,	25.54.25	1851 8
	B. 697	0.513	718879	187432	HGHT	2.6835	1254-3
	8.994	0.530	241143	47043		A. San water	
	9.105	0.537	1304927	250131	HGHT	3.3949	1254-4
	9.357	0.552	724669	123648			
	9.669	0.570	1567702	282018	HGHT	3.3174	1254-5
	9.847	0.581	230430	49363			
	10.025	0.591	944410	191123			
	10.144	0.598	542848	114661			
	10.387	0.608	169946	33000			
	10.418	0.614	216229	44513			
	10.596	0.625	917616	179132	HGHT	4.0885	1260-1
	10.744	0.634	550912	101878			
	10.863	8.641	464419	85847			
	11.115	0.655	370289	48288			
	11.301	0.666	2621262	424416	HGHT	4.4384	1260-2
	11.508	0.679	82442	15224			
	11.723	0.691	197543	18276			
	12.242	0.722	1428672	198149	HGHT	3.9673	1260-3
6	12.502	0.737	749877	104515			
)	12.695	0.749	930602	.129075	HGHT	4.5603	1260-4
,	13.207	0.779	66010	9437			
	13.859	0.817	434945	52428			
	14.126	0.833	35390	4440			
	14.660	0.864	922060	104224	HGHT	4.1141	1260-5

14.920 16.544 16.959	0.880 0.976 1.000	63166 248300 14213	7449 23928 1423			
OTAL		18060018	3159885		34.6282	
GROUP SUMMARY) E	CD1A-DB5 1ul					
Group Center (minutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Group Name
		8	0	HGHT	0.0000	A-1242
		133612	35937	HGHT	0.1456	A-1248
		4055770	830891	HGHT	2.8038	A-1254
		6820210	1034996	HGHT	4.2570	A-1260
OTAL		11009593	1901824		7, 2065	

PETECTOR: ECD1B-DB608 1ul

Retention Time (minutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Component Name
2.527	0.166	116366	45352	-	************	
3.854	0.253	19723	7004			
5.864	0.384	24834	2239	HGHT	Invalid	1248-B2
6.843	0.448	12814	1921		2100000000	
7.095	0.465	109851	29908			
7.184	0.471	189025	50814	HGHT	1.5223	1248-B4
7.659	0.502	3707	1380		1,155	32.00.20
7.785	0.510	8276	2748			
7.889	0.517	34321	11329			
8.059	0.528	335997	89260	HGHT	2.1606	1254-B1
8.178	0.536	286995	36670	3,20,10		120, 21
8.364	0.548	579945	162422	HGHT	2.6499	1254-B2
8.490	0.556	756021	220473	HGHT	3.3423	1254-B3
8.660	0.567	25948	8490	3 3000	2.5.42	
8.846	0.580	394590	107661			
9.113	0.597	941304	123325	HGHT	2.9626	1254-B4
9.291	0.609	1529833	207947	HGHT	3.0712	1260-B1
9.491	0.622	524250	116106		33,00	23.07
9.795	0.642	555556	47957			
10.166	0.666	1124537	152925			
10.485	0.687	3114433	456917	HGHT	4.3252	1260-B2
11.308	0.741	153426	24338		-3-77	500000
11.575	0.758	899236	117330			
11.716	0.768	49@957	93252			
11.849	0.776	1349707	205737	HGHT	4.1252	1260-B3

12.139	0.795	75511	11541			
12.762	0.836	38470	5687			
13,229	0.867	29519	4307			
13.585	0.890	1247902	114918	HGHT	4.0985	1260-B4
15.261	1.000	220201	23613			
Tral		14859121	2483572		28.2578	
GROUP SUMMARY	ECD1B-D8608 1u1					
aroup Center	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Group Name
		0	0	HGHT	0.0000	A-1242-2
		213058	53054	HGHT	0.2653	A-1248-2
		2613266	595480	HGHT	2.8411	A-1254-2
		7241874	985519	HGHT	3.9217	A-1260-2
TOTAL		10068199	1634053		7.0281	
9						

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD

Sample No: MCCC-01

DILUTION

Lab Sample ID: R118FDIL

QC Report No: R118-Dames & Moore

LIMS ID: 96-21713 Matrix: Concrete

Project:

00681-089-163

Date Sampled: 12/13/96

12/13/96

Data Release Authorized:

Date Received:

Reported: 12/17/96

Date extracted: 12/16/96 Date analyzed: 12/16/96

GPC Cleanup: No Florisil Cleanup: No Acid Cleanup: Yes

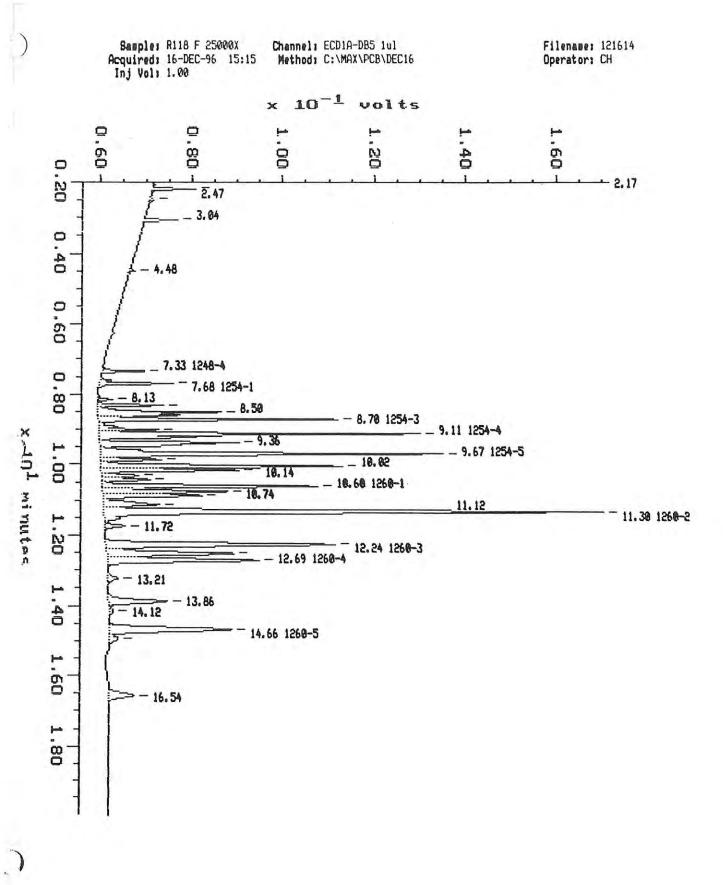
Sample Amount: 30.0 g-as-rec

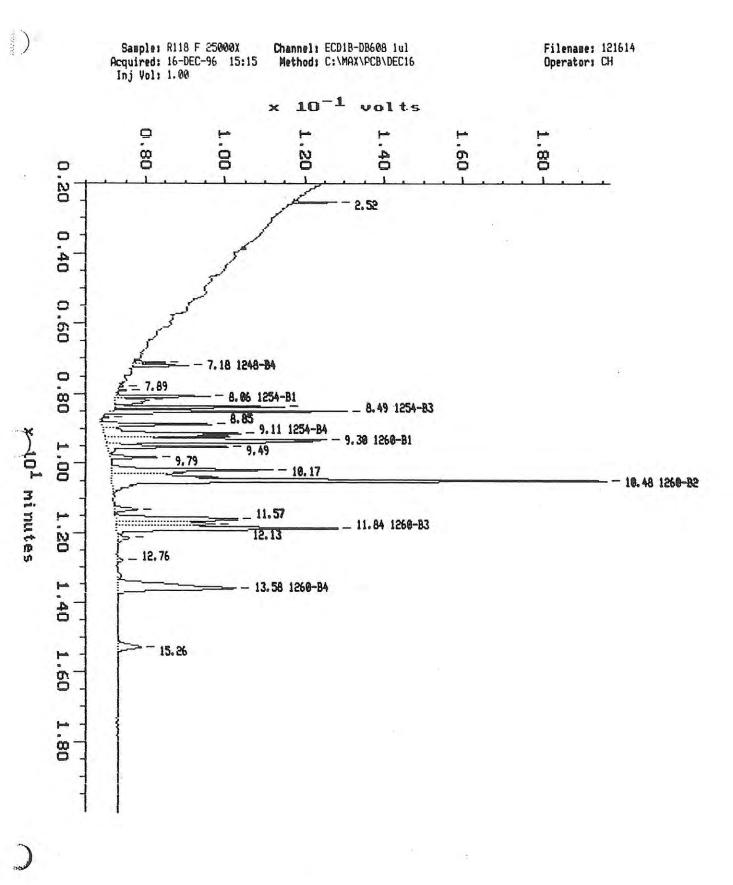
Sulfur Cleanup: No

Final Ext Vol: 10 mL

Conc/Dilution Factor: 1:25000

Reported in Total ug/kg as received


CAS Number	Analyte	Value
12674-11-2	Aroclor 1016	830,000 T
53469-21-9	Aroclor 1242	830,000 t
12672-29-6	Aroclor 1248	830,000 t
11097-69-1	Aroclor 1254	830,000 0
11096-82-5	Aroclor 1260	7,200,000
11104-28-2	Aroclor 1221	1,700,000 U
11141-16-5	Aroclor 1232	830.000 U


PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl Tetrachlorometaxylene

Data Qualifiers

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- Indicates compound was not analyzed. NA
- Indicates no recovery due to interferences. NR
- NV Indicates no value reportable - see additional analyses.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

th IMA (c)1990 Dynamic Solutions, Division of Millipore

MAXIMA 820 CUSTOM REPORT

Printed: 16-DEC-1996 15:44:03

SAMPLE: R118 F 25000X

#19 in Method: PCB ANALYSIS

Acquired: 16-DEC-1996 15:15

Rate: 2.2 points/sec

Duration: 20.000 minutes

Operator: CH

Type: UNKN

Instrument: ECD1

Filename: 121614

Index: Disk

Injection Volume: 1.0

	ention Time nutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Component Name
	2.171	0.131	22710	9473		*************	
	2.475	0.150	1636	585			· va
	3.038	0.184	18382	7192		TC	X V
)	4.477	0.271	2791	971		,	
,	7.325	0.443	32167	8984	HGHT	0.1803	1248-4
	7.681	0.464	67135	16277	HGHT	0.3424	1254-1
	8.134	0.492	11597	3189			1,22
	8.297	0.501	58157	14084	HGHT	0.3991	1254-2
	8.497	0.514	181661	27074	27,233	2792310	7-3-2-
	8.697	0.526	211737	52231	HGHT	0.5715	1254-3
	8.994	0.544	67052	12901			107.0.7
	9.105	0.550	358585	70243	HGHT	0.7469	1254-4
	9.357	0.566	184541	30308			
	9.669	0.584	406344	74805	HGHT	0.7150	1254-5
	9.847	0.595	58647	12924		32003030	2777-7
	10.025	0.606	254526	52684			
	10.144	0.613	149760	29828			
	10.307	0.623	41101	8025			
	10.418	0.638	49881	10376			1
	10.596	0.640	237880	46962	HGHT	0.8719	1260-1
	10.744	0.649	145596	27195			1
	10.863	0.657	116228	21343			1
	11.115	0.672	90389	11975			1
	11.301	0.683	690103	109356	HGHT	0.9081	1260-2
	11.716	0.708	24957	4204	7.0	0.0077.657	1260-3
	12.242	0.740	359477	50075	HGHT	0.8454	1260-3
	12.502	0.756	191733	27516			
	12.695	0.767	233538	33015	HGHT	0.9421	1260-4
	13.207	0.798	14711	2143			1/
	13.859	0.838	102227	12429			. /(0
	14.119	0.853	6732	903			
	14.660	0.886	228338	26707	HGHT	0.8822	1260-5
	14.912	0.901	14637	1724			1
	16.544	1.000	56608	5485			

OTAL	-	4682565	823189		7.4049	
GROUP SUMMARY: EC	DIA-DB5 1ul					
Broup Center (minutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Group Name
		0	0	HGHT	0.0000	A-1242
		32167	8984	HGHT	0.0215	A-1248
		1101959	227640	HGHT	0.6126	A-1254
		1749335	266116	HGHT	0.8904	A-1260
OTAL		2883461	502739		1.5245	
DETECTOR: ECD1B-D						
Retention Time minutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Component Name
2.519	0.165	25415	10875	53.55		
7.095	0.465	27121	7733			
7.184	0.471	45845	14198	HGHT	0.3572	1248-B4
7.778	0.510	4312	1144		- Applications	
7.889	8.517	7280	2385			
8.059	0.528	84927	23885	HGHT	0.4897	1254-B1
8.178	0.536	60407	8227			
8.364	0.548	144872	42812	HGHT	0.5732	1254-B2
8.490	0.556	197016	59328	HGHT	0.7363	1254-B3
8.660	0.567	4412	1605			
8.846	0.580	112511	27544			
9.113	0.597	274826	34109	HGHT	0.6579	1254-B4
9.298	0.609	410241	55479	HGHT	0.6967	1260-B1 \
9.491	0.622	134929	30272			1
9.795	0.642	51984	11798			1
10.166	0.666	283799	40457			
10.485	0.687	821050	123990	HGHT	0.9596	1260-B2
11.301	0.740	36239	5898			10.50
11.575	0.758	237527	30738			0.50
11.716	0.768	127898	24620			112
11.842	0.776	356295	55439	HGHT	0.9028	1260-B3
12.131	0.795	18128	2843			
12.762	0.836	7610	1284			
13.585	0.898	314533	29592	HGHT	0.8820	1260-B4
15.261	1.000	50867	5664			

GROUP SUMMARY: ECD1B-DB608 1ul

1

Group Center (minutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml)	Group Name
-		*********			***********	
		0	0	HGHT	0.0000	A-1242-2
		45845	14198	HGHT	0.0531	A-1248-2
		701641	160134	HGHT	0.6255	A-1254-2
		1902119	264500	HIGHT	0.8713	A-1260-2
		~~~~~~				
AL		2649605	438833		1.5498	

Sample: AR1660 1.0 PPM Acquired: 17-DEC-96 13:59 Inj Vol: 1.00 Channel: ECD1A-DB5 1ul Method: C:\MAX\PCB\DEC16-2 Filename: 121658 Operator: CH 10-1 volts 0.60 0.80 40 0.20 2.47 0.40 3.74 TCMX 4.19 4.62 -- 4.95 1242-2 5.26 1242-3 0.60 - 5.69 1242-4 5.86 1242-5 0.80 7.67 1254-1 8.13 8.50 8.69 1254-3 > 101 minutes - 9.36 1,00 - 9.67 1254-5 10.02 10.14 - 10.59 1260-1 10.74 11.11 1.20 11.30 1260-2 11.72 12.24 1260-3 - 12.69 1260-4 - 13.20 1,40 -13.8414.12 14.65 1260-5 1,60 16.54 1.80

18.36 DCB

Sample: AR1660 1.0 PPM Acquired: 17-DEC-96 13:59 Inj Vol: 1.00 Channel: ECD1B-DB608 1ul Method: C:\MAX\PCB\DEC16-2 Filename: 121658 Operator: CH 10-1 volts 2.00 5.00 1,00 0.20 2.26 3.05 TCMX-2 3.54 3.71 3.20 0.40 4.05 1242-B1 - 4.73 1242-B2 - 5.09 0.60 - 5.34 1242-R3 5.61 1248-B1 5.84 1248-B2 6.63 41 1248-B3 6.96 7.18 1248-B4 0.80 8. 66 1254-B1 8.49 1254-B3 9.11 1254-B4 1714. ro.~ 9.29 1260-B1 9.48 9,79 - 10.16 - 10.48 1260-B2 1.20 11.57 11.84 1260-B3 12.12 _ 12.75 13.21 13.58 1260-B4 15.25 _ 17.03 DCB-2 1.80

MAXIMA (c)1990 Dynamic Solutions, Division of Millipore

## MAXIMA 820 CUSTOM REPORT

Printed: 19-DEC-1996 8:50:19

SAMPLE: AR1660 1.0 PPM

#28 in Method: PCB ANALYSIS

Acquired: 17-DEC-1996 13:59

Rate: 2.2 points/sec

Duration: 20.000 minutes

Operator: CH

Type: UNKN

Instrument: ECD1

Filename: 121658

Index: 23

Injection Volume: 1.0

	ention Time nutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml )	Component Name
	2.475	0.135	13651	4552	1000		
	3.736	0.203	206594	67725	HGHT	91.2540	TCMX
	4.025	0.219	33436	10621	710171	7172570	TOTA
)	4.188	0.228	38789	12955			
	4.284	0.233	166079	52287	HGHT	0.8909	1242-1
	4.618	0.252	23736	7612	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,0,0	12.2
	4.952	0.270	335545	66996	HGHT	0.8992	1242-2
	5.122	0.279	38401	10784			1272 2
	5.263	0.287	204663	61064	HGHT	0.8900	1242-3
	5.523	0.301	104168	19924	110111	0.0700	11.71. 3
	5.686	0.310	592691	135613	HGHT	0.8742	1242-4
	5, 857	0.319	248444	73980	HGHT	0.8591	1242-5
	5.990	<b>0.</b> 326	175340	50979	HGHT	0.8314	1248-1
	6.079	0.331	50053	14899	100.00	2,001,	10.10
	6.235	0.340	157521	43861	HGHT	0.8640	1248-2
	6.324	0.344	254679	40414	11300	C7 CC 7 C	12.10
	6.598	0.359	272142	49@49			
	6.806	0.371	186040	45238	HGHT	0.8527	1248-3
	6.954	0.379	44845	11565	1,000		12.10 5
	7.318	0.399	185980	34912	HGHT	0.8427	1248-4
	7.674	0.418	162606	36805	HGHT	0.8577	1254-1
	8.134	0.443	31383	7875	6.40.60	3,100,1	1207
	8.289	0.451	112966	27986	HGHT	0.8494	1254-2
	8.497	0.463	233676	38521			
	8.690	0.473	289511	74628	HGHT	0.8694	1254-3
	8.890	0.484	26637	6483			
	8.987	0.489	61238	16427			
	9.098	0.495	332845	84375	HGHT	0.9212	1254-4
	9.202	0.501	122434	30967		44,70.55	7201.17
)	9.357	0.510	229484	38548			
	9.669	0.527	503702	93172	HELLT	0.9120	1254-5
	9.839	0.536	63451	13781		9.77.7	
	10.017	0.546	258442	53709			
	10.136	0.552	147432	30891			

10.299	0.561	53083	10090			
10.411	0.567	46892	10227			
10.589	0.577	240716	47777	HGHT	0.8885	1260-1
10.744	0.585	152106	28591	(1017)	V. 0000	1200 1
10.863	0.592	126027	23521			
11.108	0.605	89183	12037			
11.301	0.615	674363	110850	Hant	0.9218	1260-2
11.501	0.626	17751	3329		***************************************	ILOU L
11.716	0.638	23758	3991			
12, 235	0.666	384184	53895	HGHT	0.9146	1260-3
12.495	0.680	187734	26861	1,2,1	0.7170	1206 3
12.687	0.691	224011	31889	HGHT	0.9075	1260-4
13.199	0.719	14364	2238		67.767.0	ILDU 7
13.844	0.754	107782	12976			
14.119	0.769	6274	887			
14.645	<b>0.798</b>	238416	27609	HGHT	0.9139	1260-5
14.905	0.812	15992	1882		*******	1200 5
16.537	0.901	93322	8769			
18.361	1.000	515346	40631	HGHT	182.3833	DCB
1		9119905	1827247		290. 3975	
GROUP SUMMARY:	ECD1A-D85 lul					
_roup Center (minutes)	Relative Time	Peak Area	Peak Height	Base	Solution Cone (ug/ml )	Group Name
		1547421	389939	HGHT	Ø. 8799	A 1616
		704881	174990	HGHT	0.8469	A-1242
		1401630	316966	HGHT	0.8920	A-1248
		1761690	272020	HGHT	0.9119	A-1254 A-1260
TO				,,,,,,,		n 1L00
ITAL		5415624	1153915		3.5308	

TECTOR: ECD1B-DB608 1ul

	ention Time nutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml )	Component Name
			-				
	2.260	0.133	35311	2253			
	3.053	0.179	299744	106777	HGHT	93, 1175	TCMX-2
	3.202	0.188	25025	2007		10000014	TOTAL E
	3.543	0.208	5331	2081			
1	3.706	0.218	32461	12182			
. 1	3.943	0.231	40339	13916			
	4.054	0.238	186035	53524	HGHT	0.8855	1242-B1
	4.618	0.271	16498	5637			
	4.729	<b>0.</b> 278	269687	75006	HGHT	0.8551	1242-B2

		1306773	328247	HGHT	0.8334	A-1242-2
roup Center	Relative Time	Peak Area	Peak Height	Base	Solution Cone (ug/ml )	Group Name
GROUP SUMMARY)	ECD1B-DB608 1ul		V44.078.5			
ral		8069748	1585419		292. 0331	
17.034	1.000	456040	40083	HGHT	186.1308	DCB-2
15.254	0.896	81693	8999	324355		
13.577	0.797	320116	31111	HGHT	0.9307	1260-B4
13.214	0.776	6218	1106			
12.754	0.749	17745	2646			
12.124	0.712	24482	3368	1000111		2200 200
11.842	0.695	356753	56769	HGHT	0.9265	1260-B3
11.716	0.688	123940	23719			
11.568	0.679	248487	32116			
11.301	0.663	29141	5048		19,57,775	2000
10.477	0.615	838223	122638	HGHT	0.9481	1260-B2
10.158	0.596	324157	42614			
9.795	0.575	68544	13134			
9.483	<b>@.</b> 557	159573	32188	100000	70 mg/K/	2007 F- 600
9.291	0.545	473091	67283	HGHT	0.8604	1260-B1
9.113	0.535	315313	41923	HGHT	0.8354	1254-B4
8.838	0.519	134127	33562			
8.660	0.508	9510	3225			2207 DO
8.490	0.498	241373	69850	HGHT	0.8812	1254-B3
8.356	0.491	215007	60019	HGHT	0.8309	1254-B2
8.178	0.480	119737	15282			ILD! DI
8. 059	0.473	144166	38587	HGHT	0.8221	1254-B1
7.889	0.463	20025	6521			
7.778	0.457	4166	1432			
7.659	0.450	4640	1616			
7.429	0.436	3187	5565	, north	0,70,0	1040 104
7.184	0.422	95529	28695	HGHT	0.7895	1248-B4
7. 888	0.416	85201	24399			
6.962	0.409	44689	13731			
6.843	0.402	20823	7467			
6.724	0.395	52129	13453			
6.628	0.389	139630	31192	110111	6. 069E	1240-03
6.413	0.376	234106	44453	HGHT	0.8052	1248-B3
6.250	0.367	12657	4272			
5.946	0.349	259022	34981	וחטחו	0.7337	1248-B2
5.842	0.343	267446	68296	HGHT	0.7937	
5.612	0.329	262519	65170	HGHT	0.7927	1248-B1
5. 338	0.313	588532	134546	HGHT	0.8277	1242-B3
5.226	0.307	150599	39663			
5.093	0.299	169760	35433			
4.915	0.289	37025	9183			

)

597@81	141445	HGHT	0.7966	A-1248-2
915859	210378	HGHT	0.8465	A-1254-2
1988183	277801	HGHT	0.9192	A-1260-2
4807895	957870		3 3957	

TU, AL

Sample: AR1660 1.0 PPM Acquired: 17-DEC-96 17:08 Inj Vol: 1.00 Channel: ECD1A-DB5 1ul Method: C:\MAX\PCB\DEC16-2 Filename: 121663 Operator: CH 10-1 0.20 2.47 0.40 3.74 TCHX 4.19 4.62 0,60 - 5.69 1242-4 5.86 1242-5 6.23 1248-2 6.68 1 1248-3 7.32 1248 0.80 7.67 1254-1 8, 13 8.50 8.69 1254-3 __ 8.99 ×101 minutes - 9.36 - 9.67 1254-5 10.02 10.14 - 10.60 1260-1 10.74 11.11 1.20 11.30 1260-2 11.71 12.24 1260-3 - 12.69 1260-4 - 13.20 1.40 -13.85- 14.11 14.65 1260-5 1,60 16.53 1.80 18.37 DCB

Sample: AR1660 1.0 PPM Acquired: 17-DEC-96 17:08 Inj Vol: 1.00 Channel: ECD1B-DB608 1ul Method: C:\MAX\PCB\DEC16-2 Filename: 121663 Operator: CH 10-1 volts 2.00 Ņ 0.20 2.26 3. 05 TCHX-2 0.40 3.71 4.05 1242-B1 - 4.74 1242-B2 - 5.09 0.60 -- 5.34 1242-R3 5.61 1248-B1 5.84 1248-B2 6.41 1248-B3 - 6.96 - 7.18 1248-B4 0.80 7,43 8. 96 1254-B1 8.49 1254-B3 85 __ 9.11 1254-B4 __ 9.29 1260-B1 1,00 9.49 - 10.17 - 10.48 1260-B2 1,20 _ 11.57 ..... _ 11.84 1260-B3 12.14 _ 12.76 13.22 1.40 - 13.58 1260-B4 15.25 1.60 17.03 DCB-2 1.80

.-. 101 ... nu. --

M IMA (c)1990 Dynamic Solutions, Division of Millipore

# MAXIMA 820 CUSTOM REPORT

Printed: 19-DEC-1996 8:50:43

SAMPLE: ARIGGO 1.0 PFM

#33 in Method: PCB ANALYSIS

Acquired: 17-DEC-1996 17:08

Rate: 2.2 points/sec

Duration: 20.000 minutes

Operator: CH

Type: UNKN Instrument: ECD1

Filename: 121663

Index: 28

Injection Volume: 1.0

	tention Time inutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/sl )	Component Name
100	2.475	0.135	7000	*****			
	3.736	0.203	7998	2578		700,000	46773
	4.025	0.219	232623 38281	75755	HGHT	102.6138	TCMX
)	4.188	0.228		12138			
	4.284	0.233	44401 185532	14613	115415	101112	1503.3
	4.618	0.251	27479	57293	HGHT	0.9978	1242-1
	4.944	0.269	364871	8785	HOLET.	. 1247.4	2000 (8
	5.122	0.279		73416	HGHT	1.0065	1242-2
	5. 263	0.287	40796	11823		370000	
	5.523	0.301	226528	66834	HGHT	0.9983	1242-3
	5.686	0.310	125705	23373		20.25	
	5.857		678878	152937	HGHT .	1.0072	1242-4
	5.998	0.319	289124	84870	HGHT	1.0091	1242-5
	6,235	0.326	265172	59567	HGHT	0.9877	1248-1
	6.324	0.339	178521	49397	HGHT	0.9928	1248-2
		0.344	293346	46105			
	6.598	0.359	353305	56977			
	6.813	0.371	219204	52529	HGHT	1.0056	1248-3
	6.954	0.379	52139	13477			
	7.318	0.398	225603	41003	HGHT	1.0084	1248-4
	7.674	0.418	184697	41122	HGHT	0.9748	1254-1
	8.134	0.443	32868	8755			
	8.289	0.451	129642	31450	HGHT	0.9679	1254-2
	8.497	0.463	273938	42739			
	8.690	0.473	320881	81786	HGHT	0.9689	1254-3
	8.890	0.484	27293	6863			
	8.987	0.489	65262	17769			
	9.098	0.495	490723	90238	HGHT	0.9952	1254-4
	9.357	0,509	245817	41795			
	9.669	0.526	546858	101202	HGHT	1.0002	1254-5
	9.839	0.536	66669	14747			
	10.025	0.546	283782	56932			
	10.144	0.552	150809	33213			
	10.307	0.561	56854	11071			
	10.411	0.567	52419	11376			

						9.
10.596	9.577	263682	51849	HGHT	0.9719	1260-1
10.744	0.585	164889	30897	DOM	6.7/17	1500-1
10.863	0.591	139802	25851			
11.108	0.605	98014	13210			
11.301	0.615	724956	119441	HGHT	1.0013	1260-2
11.501	0.626	20405	3831	110111	1.6615	TOU L
11.708	0.637	25315	4349			
12.235	0.666	410097	57955	HGHT	0.9588	1260-3
12.495	0.680	201476	28940	,,,,,,,	C4 7000	1200 5
12.687	0.691	243229	34423	HGHT	0.9857	1260-4
13.199	0.719	18118	2593		C. 150.	1000
13.852	0.754	122570	14203			
14.111	0.768	8152	1089			
14.645	0.797	257955	30273	HGHT	1.0086	1260-5
14.912	0.812	16098	1955	1,0,11	11000	1200 3
16.529	0.900	95873	9307			
18.369	1.000	545502	43107	HGHT	194.9725	DCB
DTAL .		10104150	1967799		316.4550	
)ROUP SUMMARY: E	CD1A-DB5 1ul					
Broup Center	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml )	Group Name
************		*******		-	, , , , , ,	
		1744934	435350	HGHT	1.0035	A-1242
		888500	202496	HGHT	0.9977	A-1248
		1672801	345798	HGHT	0.9856	A-1254
		1899920	293941	HGHT	0.9924	A-1260
DTAL		6206154	1277585		3.9792	
AFTERTOR- CONTR	DD/ 00 1 1					
DETECTOR: ECD1B-	DB608 1ul			46		
Retention Time	Relative Time	Peak Area	Peak Height	Base	Solution Conc	Component Name

TOTAL

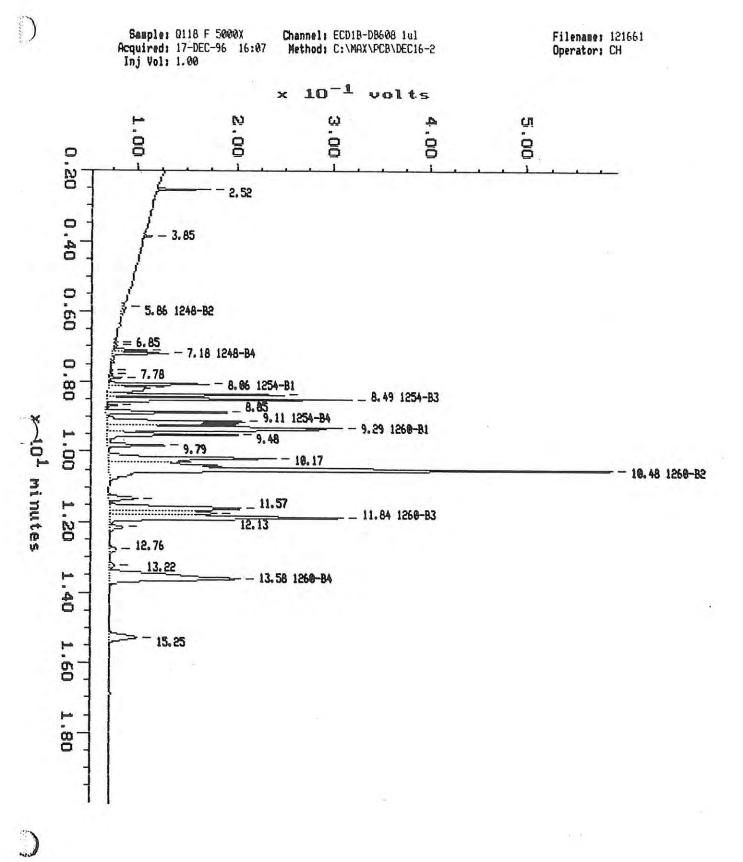
TOTAL

	tention Time inutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml )	Component Name
-					-		
	2.260	0.133	21032	1608			
	3.053	0.179	327433	116938	HGHT	103.3586	TCMX-2
	3.543	0.208	7347	2818			
	3.706	0.218	52174	14939			
	3.943	0.231	44709	15038			
	4.054	0.238	210772	58618	HGHT	1.0066	1242-B1
1	4.618	0.271	17560	6232		4,0,7,0	
-	4.737	0.278	307447	84335	HGHT	1.0092	1242-B2
	4.915	0.289	47437	11332			1000
	5.093	0.299	216168	44030			
	5.226	0.307	185655	47664			

5.338	0.313	700119	158365	HGHT	1.0101	1242-B3
5.612	0.329	324180	79709	HGHT	1.0130	1248-B1
5.842	0.343	322018	81945	HGHT	0.9799	1248-B2
5.946	0.349	330381	43643		2.3.3.	
6.250	0.367	17456	5524			
6.413	0.376	275898	53681	HGHT	0.9951	1248-B3
6.628	0.389	168945	38152	110-114		12 10 20
6.724	0.395	62930	16372			
6.843	0.402	25865	9044			
6.962	0.409	56205	16825			
7.088	0.416	106337	30420			
7.184	0.422	121085	35326	HGHT	0.9999	1248-R4
7.429	0.436	11078	3274	1,511	6	12 10 14
7.659	0.450	5290	1935			
7.778	0.457	6974	2131			
7.889	0.463	24032	7695			
8.059	0.473	168642	45536	HGHT	0.9880	1254-B1
8.178	0.480	135820	16704	7,011	0. 7000	1634-61
8.356	0.491	251013	69855	HGHT	0.9844	1254-B2
8.498	0.498	276287	79123	HGHT	1.0119	1254-B3
8.660	0.508	11317	3743	-		1207 25
8.846	0.519	152231	37371			
9.113	0.535	369276	47414	HGHT	0.9629	1254-B4
9.291	0.545	519090	75091	HGHT	0.9705	1260-B1
9.491	0.557	175593	35337	11-111		ILUG DI
9.795	0.575	70647	14387			
10.166	0.597	354982	47344			
10.485	0.616	928966	134289	HGHT	1.0476	1260-B2
11.301	0.663	37851	6296		*******	TLUE DE
11.568	0.679	263752	33927			
11.716	0.688	134919	25203			
11.842	0.695	395233	61764	HGHT	1.0162	1260-B3
12.139	0.713	21873	3268	1,0,7		100 00
12.762	0.749	18997	2793			
13.221	0.776	5926	1107			
13.577	0.797	360863	34283	HGHT	1.0334	1260-B4
15.254	0.896	90040	9769	110111	1.0004	1206 04
17.034	1.000	498126	43223	HGHT	202,7921	DCB-2
	1002.73			TIO!	LOL, I JEI	DCD-E
		923797@	1815423		321.1794	

_ROUP SUMMARY: ECD1B-DB608 1ul

roup Center sinutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml )	Group Name
, 1		1542519	381027	HGHT	1.0089	A-1242-2
		719001	170953	HGHT	0.9889	A-1248-2
		1065219	241928	HGHT	0.9899	A-1254-2
		2204152	305427	HGHT	1.0198	A-1260-2


TOTAL 5530891 1099335

1099335 4.0076

.

-

2 nd dil ) Sample: 0118 F 5000X Channel: ECD1A-DR5 1u1 Method: C:\MAX\PCB\DEC16-2 Filename: 121661 Operator: CH Acquired: 17-DEC-96 16:07 Inj Vol: 1.00 10-1 volts 2.00 1.00 4.00 5,00 0.20 - 2.17 2.47 3.04 0.40 - 4.48 0.60 6.23 1248-2 6.60 6.81 1248-3 7.32 1248-4 0.80 7.67 1254-1 8.13 8.69 1254-3 9.18 1254-4 x-101 minutae - 9.36 - 9.67 1254-5 10.02 10.14 - 10.60 1260-1 18.74 11,11 1.20 11.30 1260-2 - 11.72 12.24 1260-3 - 12.69 1260-4 - 13.20 1,40 -- 13.86 14.12 14.65 1268-5 1,60 - 16.54 - 16.95



CITAL Silution

M...IMA (c)1990 Dynamic Solutions, Division of Millipore

# MAXIMA 820 CUSTOM REPORT

Printed: 18-DEC-1996 8:14:04

SAMPLE: 0118 F 5000X

#31 in Method: PCB ANALYSIS

Acquired: 17-DEC-1996 16:07

Rate: 2.2 points/sec

Duration: 20.000 minutes

Operator: CH

Type: UNKN

Instrument: ECD1

Filename: 121661

Index: Disk

Injection Volume: 1.0

	ntion Time utes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml )	Component Name
	2.171	0.128	106848	44124	-		***********
	2.475	0.146	2489	867			
	3.038	0.179	90043	34562			
	4.477	0.264	14765	5067			
	6.235	0.368	10851	2558	HGHT	0.0248	1248-2
	6.598	0.389	2443	634		VI 02 10	1646 E
	6.806	0.401	2062	537	HGHT	Invalid	1248-3
	7.318	0.432	141600	37180	HGHT	0.9039	1248-4
	7.574	0.453	269982	63740	HGHT	1.6371	1254-1
	8.134	0.480	61582	15331	110111	1.00/1	1234-1
	8.289	0.489	246322	59594	HGHT	2.0231	1254-2
	8.497	0.501	586873	101396		Liveor	ILSY L
	8.690	0.513	781006	203338	HGHT	2.9814	1254-3
	8,987	0.530	261025	52716	7,2,77	2.7014	1654-5
	9.098	0.537	1441965	272995	HGHT	3.7982	1254-4
	9.357	0.552	803506	136665		0.1700	11.54 4
	9.669	0.570	1724349	315753	HGHT	3.8201	1254-5
	9.839	0.580	254655	53680		Dr DEC.	1004 0
19	10.025	0.591	1024393	207847			
. 17	10.144	0.598	604386	124836			
	10.299	0.608	184341	35974			
	10.411	0.614	237328	48361			
1	0.596	0.625	1002201	199205	HGHT	4.6700	1260-1
	0.744	0.634	600302	112556			1200 1
	0.863	0.641	519097	94709			
	1.108	0.655	404142	52753			1
	1.301	0.667	2882214	470618	HGHT	5.0637	1260-2
	1.501	0.678	86130	16243		23.63.21	
	1.716	0.691	117692	20044			Y0.8204
	2.235	0.722	1584132	219096	HGHT	4.4820	1260-3
	2.495	0.737	844222	115896		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1264-3
	2.687	0.748	1023629	142345	HGHT	5. 1631	1260-4
	3.199	0.779	77005	10973			/41.7
1	3.859	0.818	491506	57766			2 / 1.03

14.119	0.833	40831	5095			f
14.653	0.864	1027624	116591	HGHT	4.7234	1260-5
14.912	0.880	73573	8724			
16.537	0.975	280551	26532			
16.952	1.000	15808	1606			
ITAL		19923393	3488510		39.2908	
GROUP SUMMARY: E	CD1A-DB5 1ul					
Group Center (minutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml )	Group Name
		0	0	HGHT	0.0000	A-1242
		154513	40276	HGHT	0.1660	A-1248
		4463545	915421	HGHT	3.1679	A-1254
		7519800	1147856	HGHT .	4.8467	A-1260
ITAL		12137858	2103553		8. 1806	
)						
NETERTION CONTR-	NR600 101					
DETECTOR: ECD1B- Retention Time (minutes)	DB608 1ul Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml )	Component Nam
Retention Time		Peak Area 142339	Peak Height53978	Base		Component Nam
Retention Time (minutes)	Relative Time	142339	53978	Base		Component Nam
Retention Time (minutes)	Relative Time	********		Base		Component Nam
Retention Time (minutes)  2.519 3.854	Relative Time  0.165 0.253	142339 25189	53978 8559	_	(ug/sl )	
Retention Time (minutes) 2.519 3.854 5.857	Relative Time  0.165 0.253 0.384	142339 25189 37528	53978 8559 3438	_	(ug/sl )	
2.519 3.854 5.857 6.851	0.165 0.253 0.384 0.449	142339 25189 37528 11870	53978 8559 3438 3116	_	(ug/sl )	
2.519 3.854 5.857 6.851 6.954	0.165 0.253 0.384 0.449 0.456	142339 25189 37528 11870 12457	53978 8559 3438 3116 2923	_	(ug/sl )	
2.519 3.854 5.857 6.851 6.954 7.088 7.184	Relative Time  0.165 0.253 0.384 0.449 0.456 0.465	142339 25189 37528 11870 12457 127204	53978 8559 3438 3116 2923 34620	нснт	(ug/sl )	1248-B2
2.519 3.854 5.857 6.851 6.954 7.088	Relative Time  0.165 0.253 0.384 0.449 0.456 0.465 0.471 0.502	142339 25189 37528 11870 12457 127204 223631	53978 8559 3438 3116 2923 34620 56765	нснт	(ug/sl )	1248-B2
Retention Time (minutes) 2.519 3.854 5.857 6.851 6.954 7.088 7.184 7.659	0.165 0.253 0.384 0.449 0.456 0.465	142339 25189 37528 11870 12457 127204 223631 10406	53978 8559 3438 3116 2923 34620 56765 2174	нснт	(ug/sl )	1248-B2
2.519 3.854 5.857 6.851 6.954 7.088 7.184 7.659 7.778 7.889	0.165 0.253 0.384 0.449 0.456 0.465 0.471 0.502 0.516	142339 25189 37528 11870 12457 127204 223631 10406 10105	53978 8559 3438 3116 2923 34620 56765 2174 3302	нснт	(ug/sl )	1248-B2
Retention Time (minutes) 2.519 3.854 5.857 6.851 6.954 7.088 7.184 7.659 7.778	0.165 0.253 0.384 0.449 0.456 0.465 0.471 0.502 0.518	142339 25189 37528 11870 12457 127204 223631 10406 10105 40880	53978 8559 3438 3116 2923 34620 56765 2174 3302 13223	 нбнт нбнт	(ug/ml )	1248-B2 1248-B4
2.519 3.854 5.857 6.851 6.954 7.088 7.184 7.659 7.778 7.889 8.059	Relative Time  0.165 0.253 0.384 0.449 0.456 0.465 0.471 0.502 0.516 0.517 0.528	142339 25189 37528 11870 12457 127204 223631 10406 10105 40880 384104	53978 8559 3438 3116 2923 34620 56765 2174 3302 13223 101283	 нбнт нбнт	(ug/ml )	1248-B2 1248-B4
2.519 3.854 5.857 6.851 6.954 7.088 7.184 7.659 7.778 7.889 8.059 8.171	Relative Time  0.165 0.253 0.384 0.449 0.456 0.465 0.471 0.502 0.518 0.517 0.528 0.536	142339 25189 37528 11870 12457 127204 223631 10406 10105 40880 384104 326541	53978 8559 3438 3116 2923 34620 56765 2174 3302 13223 101283 41897	 нбнт нбнт	(ug/el ) 0.0070 1.7345	1248-B2 1248-B4 1254-B1
2.519 3.854 5.857 6.851 6.954 7.088 7.184 7.659 7.778 7.889 8.059 8.171 8.356	Relative Time  0.165 0.253 0.384 0.449 0.456 0.465 0.471 0.502 0.510 0.517 0.528 0.536 0.548	142339 25189 37528 11870 12457 127204 223631 10406 10105 40880 384104 326541 653385	53978 8559 3438 3116 2923 34620 56765 2174 3302 13223 101283 41897 180585	нонт нонт нонт	(ug/el )  0.0070  1.7345  2.5220  3.0236	1248-B2 1248-B4 1254-B1 1254-B2
Retention Time (minutes)  2.519 3.854 5.857 6.851 6.954 7.088 7.184 7.659 7.778 7.889 8.059 8.171 8.356 8.490	Relative Time  0.165 0.253 0.384 0.449 0.456 0.465 0.471 0.502 0.510 0.517 0.528 0.536 0.536	142339 25189 37528 11870 12457 127204 223631 10406 10105 40880 384104 326541 653385 855640	53978 8559 3438 3116 2923 34620 56765 2174 3302 13223 101283 41897 180585 250238	HGHT HGHT HGHT HGHT	(ug/sl )  0.0070  1.7345  2.5220  3.0236 3.9141	1248-B2 1248-B4 1254-B1 1254-B2 1254-B3
Retention Time (minutes)  2.519 3.854 5.857 6.851 6.954 7.088 7.184 7.659 7.778 7.889 8.059 8.171 8.356 8.490 8.660	Relative Time  0.165 0.253 0.384 0.449 0.456 0.465 0.465 0.471 0.502 0.510 0.517 0.528 0.536 0.536 0.548 0.557 0.568	142339 25189 37528 11870 12457 127204 223631 10406 10105 40880 384104 326541 653385 855640 32680 444214 1069635	53978 8559 3438 3116 2923 34620 56765 2174 3302 13223 101283 41897 180585 250238 10457 122386 140164	HGHT HGHT HGHT HGHT HGHT	(ug/sl )  0.0070  1.7345  2.5220  3.0236 3.9141  3.4660	1248-B2 1248-B4 1254-B1 1254-B2 1254-B3
Retention Time (minutes)  2.519 3.854 5.857 6.851 6.954 7.088 7.184 7.659 7.778 7.889 8.059 8.171 8.356 8.490 8.660 8.846	Relative Time  0.165 0.253 0.384 0.449 0.456 0.465 0.471 0.502 0.516 0.517 0.528 0.517 0.528 0.557 0.568 0.589	142339 25189 37528 11870 12457 127204 223631 10406 10105 40880 384104 326541 653385 855640 32680 444214 1069635 1747125	53978 8559 3438 3116 2923 34620 56765 2174 3302 13223 101283 41897 180585 250238 10457 122386 140164 239609	HGHT HGHT HGHT HGHT	(ug/sl )  0.0070  1.7345  2.5220  3.0236 3.9141	1248-B2 1248-B4 1254-B1 1254-B2 1254-B3
2.519 3.854 5.857 6.851 6.954 7.088 7.184 7.659 7.778 7.889 8.059 8.171 8.356 8.490 8.660 8.846 9.113	Relative Time  0.165 0.253 0.384 0.449 0.456 0.465 0.471 0.502 0.510 0.517 0.528 0.517 0.528 0.536 0.548 0.557 0.568 0.580 0.597	142339 25189 37528 11870 12457 127204 223631 10406 10105 40880 384104 326541 653385 855640 32680 444214 1069635	53978 8559 3438 3116 2923 34620 56765 2174 3302 13223 101283 41897 180585 250238 10457 122386 140164	HGHT HGHT HGHT HGHT HGHT	(ug/sl )  0.0070  1.7345  2.5220  3.0236 3.9141  3.4660	1248-B2 1248-B4 1254-B1 1254-B2 1254-B3
2.519 3.854 5.857 6.851 6.954 7.088 7.184 7.659 7.778 7.889 8.059 8.171 8.356 8.490 8.660 8.846 9.113 9.291	Relative Time  0.165 0.253 0.384 0.449 0.456 0.465 0.471 0.502 0.510 0.517 0.528 0.536 0.536 0.548 0.557 0.568 0.597 0.609 0.622 0.642	142339 25189 37528 11870 12457 127204 223631 10406 10105 40880 384104 326541 653385 855640 32680 444214 1069635 1747125 597041 249398	53978 8559 3438 3116 2923 34620 56765 2174 3302 13223 101283 41897 180585 250238 10457 122386 140164 239609 132780 56509	HGHT HGHT HGHT HGHT HGHT	(ug/sl )  0.0070  1.7345  2.5220  3.0236 3.9141  3.4660	1248-B2 1248-B4 1254-B1 1254-B2 1254-B3
Retention Time (minutes)  2.519 3.854 5.857 6.851 6.954 7.088 7.184 7.659 7.778 7.889 8.059 8.171 8.356 8.490 8.660 8.846 9.113 9.291 9.483	Relative Time  0.165 0.253 0.384 0.449 0.456 0.465 0.471 0.502 0.518 0.517 0.528 0.536 0.548 0.557 0.568 0.597 0.669 0.622 0.642 0.666	142339 25189 37528 11870 12457 127204 223631 10406 10105 40880 384104 326541 653385 855640 32680 444214 1069635 1747125 597041 249398 1296580	53978 8559 3438 3116 2923 34620 56765 2174 3302 13223 101283 41897 180585 250238 10457 122386 140164 239609 132780 56509	HGHT HGHT HGHT HGHT HGHT	(ug/el )  0.0070  1.7345  2.5220  3.0236 3.9141  3.4660 3.6352	1248-B2 1248-B4 1254-B1 1254-B2 1254-B3 1254-B4 1260-B1
Retention Time (minutes)  2.519 3.854 5.857 6.851 6.954 7.088 7.184 7.659 7.778 7.889 8.059 8.171 8.356 8.490 8.660 8.846 9.113 9.291 9.483 9.795	Relative Time  0.165 0.253 0.384 0.449 0.456 0.465 0.471 0.502 0.510 0.517 0.528 0.536 0.536 0.548 0.557 0.568 0.597 0.609 0.622 0.642	142339 25189 37528 11870 12457 127204 223631 10406 10105 40880 384104 326541 653385 855640 32680 444214 1069635 1747125 597041 249398	53978 8559 3438 3116 2923 34620 56765 2174 3302 13223 101283 41897 180585 250238 10457 122386 140164 239609 132780 56509	HGHT HGHT HGHT HGHT HGHT	(ug/sl )  0.0070  1.7345  2.5220  3.0236 3.9141  3.4660	1248-B2 1248-B4 1254-B1 1254-B2 1254-B3

4.6399

11.575	0.759	1009337	133240			y and the second
11.716	0.768	609980	108124			
11.842	0.776	1519775	239171	HGHT	4.9922	1260-B3
12.131	0.795	85201	13106			
12.762	0.837	48278	6940			/
13.221	0.867	36984	5387			1
13.585	0.891	1450831	132654	HGHT	4.8903	1260-B4
15.254	1.000	259898	27684			- (
TAL		17039898	2841152		33. 2245	
GROUP SUMMARY: E	CD1B-DB608 1u1	2				
Proup Center (minutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml )	Group Name
		8	8	LICUT	0.000	
		5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	1200000	HGHT	ଉ. ଉଉଉଉ	A-1242-2
		261159	60202	HGHT	0.3058	A-1248-2
		2962765	672269	HGHT	3.3024	A-1254-2
*		8263615	1127856	HGHT	4.6325	A-1260-2

1860327

11487538

DIAL

8.2407



# ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD

Sample No: MCCC-01

Dilution2

Lab Sample ID: R118F-DL2

QC Report No:

R118-Dames & Moore

LIMS ID: 96-21713 Matrix: Concrete

Final Ext Vol:

Project:

00681-089-163

Date Sampled:

12/13/96

Date Received: 12/13/96

C4 12/18/2

Data Release Authorized: Reported: 12/18/96

Date extracted: 12/16/96

Date analyzed: 12/17/96

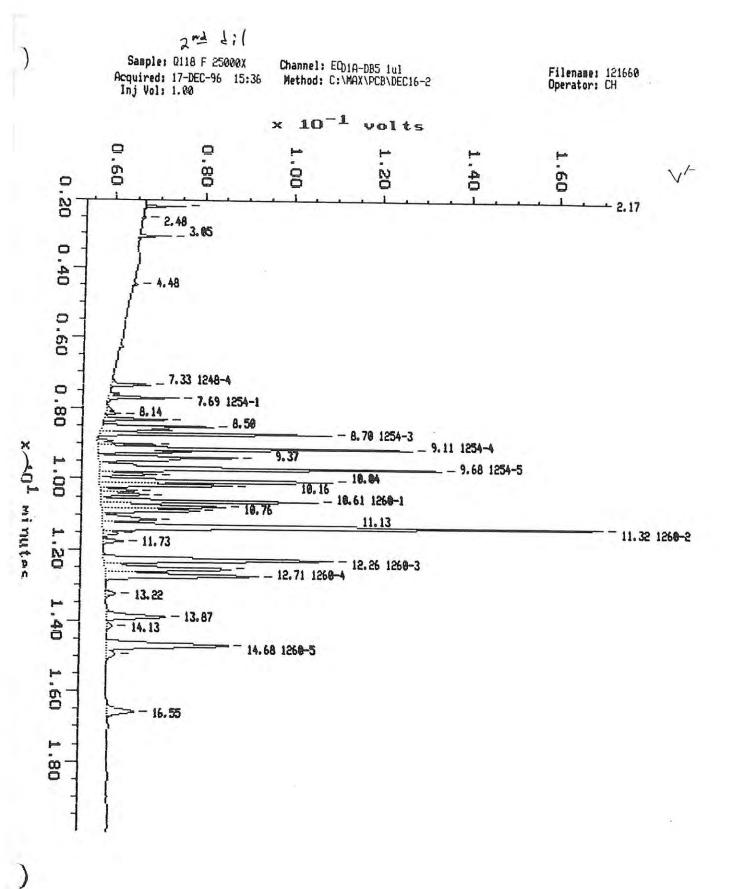
Sample Amount: 30.0 g-as-rec

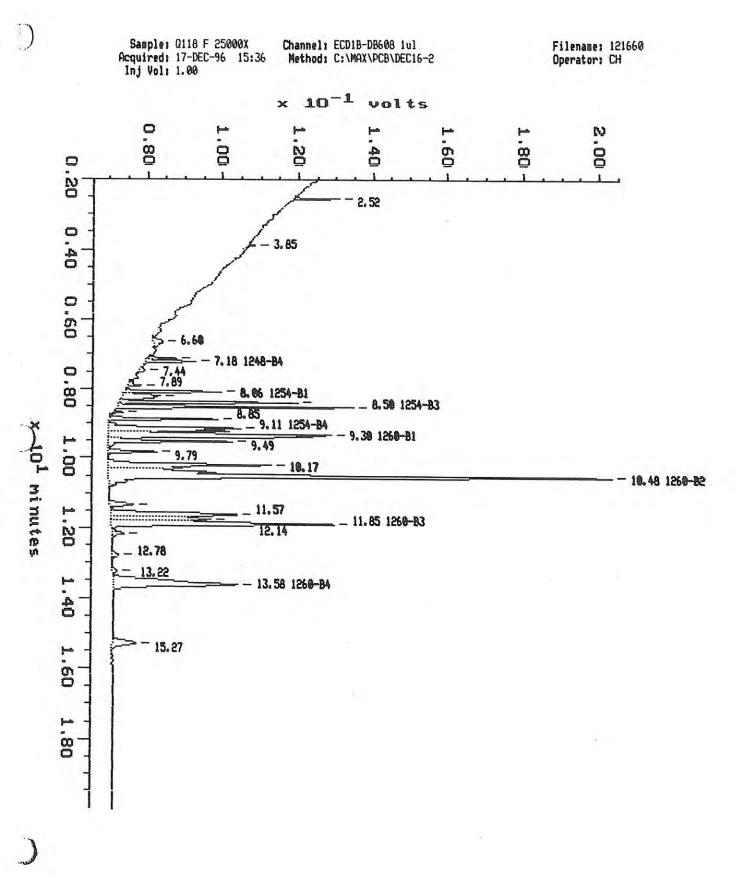
10 mL

GPC Cleanup: No

Florisil Cleanup: No Acid Cleanup: Yes

Sulfur Cleanup: No Conc/Dilution Factor: 1:25000


# Reported in Total ug/kg as received


CAS Number	Analyte		Value	
12674-11-2	Aroclor 10	16	830,000	U
53469-21-9	Aroclor 12	42	830,000	U
12672-29-6	Aroclor 12	48	830,000	U
11097-69-1	Aroclor 12	54	830,000	U
11096-82-5	Aroclor 12	60	7,600,000	
11104-28-2	Aroclor 12	21	1,700,000	U
11141-16-5	Aroclor 12	32	830,000	

## PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl D Tetrachlorometaxylene D

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- NV Indicates no value reportable see additional analyses.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.





client didn't believe sample contained this high of a hit, so a new dilution was made to check for possibility of error.

Matcher initial dilution.

M IMA (c)1990 Dynamic Solutions, Division of Millipore

MAXIMA 820 CUSTOM REPORT

Printed: 17-DEC-1996 15:57:50

SAMPLE: 0118 F 25000X

#30 in Method: PCB ANALYSIS

Acquired: 17-DEC-1996 15:36

Rate: 2.2 points/sec

Duration: 20.000 minutes

Operator: CH

Type: UNKN

Instrument: ECD1 Filename: 121660

Index: Disk

Injection Volume: 1.0

DETECTOR: ECDIA-DB5 1ul

	ention Time inutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml )	Component Name
	2.171	0.131	21989	9202	-	************	***********
	2.482	0.150	1748	608			
	3.046	0.184	17823	7014			
)	4.485	0.271	2647	919			
	7.333	0.443	32940	8516	HGHT	0.1689	1248-4
	7.689	0.465	61388	15622	HGHT	0.3271	1254-1
	8.141	0.492	18121	3157	7.0.11	VISCII	11.54 1
	8.304	0.502	55316	13885	HGHT	0.3929	1254-2
	8.504	0.514	143024	24931	110111	0.5323	1234-2
	8.705	8.526	197751	51874	HGHT	0.5669	1254-3
	9.001	<b>8.544</b>	58679	12675	7,647	0.0007	1234-3
	9.113	0.551	358604	70270	HGHT	0.7472	1254-4
	9.372	0.566	184529	31225	1,011	O. T. TIL	1634-4
	9.684	0.585	409388	76426	HGHT	0.7322	1254-5
	9.854	0.595	56099	12730	1,011	O. FOLL	ILDY J
	10.040	0.607	252626	52040			
	10.158	0.614	141186	29571			
	10.314	0.623	39248	7882			
	10.425	0.630	49829	18478			
	10.611	0.641	239145	48355	HGHT	0.9003	1260-1
	10.759	0.650	145815	27751		1134445	1200 1
	10.878	0.657	119745	21950			\ .
	11.130	0.672	89568	12065			\ \
	11.315	0.684	681984	112159	HGHT	0.9338	1260-2
	11.523	0.696	18105	3405			
	11.731	0.709	24820	4342			6911-
	12.257	0.741	368469	51213	HGHT	0.8660	1260-3 6.9167
	12,509	0.756	199089	28260			
1	12.710	0.768	241281	34141	HGHT	0.9770	1260-4 / 1) (
)	13.221	0.799	15136	2231		3,377	1200
	13.874	0.838	108354	13160			
	14.134	0.854	8618	1073			
	14.675	0.887	237383	27403	HGHT	0.9066	1260-5 /
	14.935	0.902	14573	1782			

DTAL		4674558	834105		7.5190	
GROUP SUMMARY:	ECD1A-DB5 1ul					
Group Center (minutes)	Relative Time	Peak Area	Peak Height	Base	Solution Cone (ug/ml )	Group Name
ROSCOURAGES		0	8	UCUT	0.0000	A 1040
		32940		HGHT	8.0000	A-1242
		1082438	8516	HGHT	0.0194	A-1248
		1768261	228077	HGHT	0.6140	A-1254
		1700001	273271	HGHT	0.9165	A-1260
DTAL		2883639	509864		1.5498	
DETECTOR: ECD11	3-DB608 1ul					
1						
letention Time (minutes)	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml )	Component Name
2.519	0.165	37493	12386	*****	***************************************	
3.854	0.252	6250	1823			
6.598	0.432	26259	2652			
7.095	0.465	26240	7627			
7.184	0.471	48847	13736	HOUT	0.2441	1240 B4
7.444	0.488	8258	1563	HGHT	0.3441	1248-B4
7.889	0.517	14510	3279			
8.059	0.528	92856	25408	DOLL	0 5020	1054 B1
8.186	0.536	73793	9995	HGHT	<b>0.</b> 5230	1254-B1
8.364	0.548	161218	47092	UCUT	0.7770	1061 PO
8. 497	0.557	214604	62798	HGHT	0.6360	1254-B2
8,660	0.567	8101	2514	HGHT	<b>6.</b> 7837	1254-B3
8.846	0.579					
9.113	0.597	101156 257379	29063	DOUT	0 1717	1054 04
9.298			34930	HGHT	0.6763	1254-B4
9.491	0.609	431848	58836	HGHT	0.7429	1260-B1
	0.622	140853	32926			
9.795	0.642	55365	12846			
10.166 10.485	0.666	308390	43321	11/4/14	1.0104	10/0 00
	0.687	893160	133634	HGHT	1.0420	1260-B2
11.308	0.741 0.750	39038	6285			
11.575	<b>9.758</b>	261412	33487			U. c
11.723	0.768	138122	26568	1104	A 8298	1260-R3 C. E.Z.
11.849	0.776	374924	58858	HGHT	0.9638	1260-B3
12.139	0.795	17378	2944			1
	0.837	9084	1502			1
12.776	Q D//					
13.221 13.585	0.866 0.890	6592 34436 <b>0</b>	1063 33086	HGHT	0.9945	1260-B4

5789

16.552

1.000

59548

15.268	1.000	55792	6277			
TOTAL		4153282	706498		6.7063	
GROUP SUMMARY:	ECD1B-DB608 1u1					
Group Center	Relative Time	Peak Area	Peak Height	Base	Solution Conc (ug/ml )	Group Name
		0	0	HGHT	0,0000	A-1242-2
		48847	13736	HGHT	0.0506	A-1248-2
		726056	170228	HGHT	0.6692	A-1254-2
		2044293	284413	HGHT	0.9432	A-1260-2
TL.AL		2819197	468377		1.6630	



23 January 1997

Steve Hitch
Dames & Moore
500 Market Place Tower
2025 First Avenue
Seattle, WA 98121

JAN 2 4 1997

DAMES & MOORE
SEATTLE

RE: Client Project: 00681-089-163 ARI Job #R447

Dear Steve:

Please find enclosed the original Chain-of-Custody (COC) record and final results for samples from the above referenced project. Two soil samples were received in good condition on 1/21/97. The samples were analyzed for PCBs as requested.

It was noted prior to extraction that both of these samples consisted primarily of small rocks. Representative portions of each were used for extraction. Both extracts were acid and mercury cleaned prior to analysis.

Carryover was detected in the Method Blank from the analysis of a previous sample. The Method Blank was re-analyzed without incident. The results for the re-analysis only have been submitted for the Method Blank.

There were no further problems with these analyses.

A copy of this package will be kept on file by ARI. Should you have any questions or problems, please feel free to call me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Mark D. Harris Project Manager 206/340-2866, ext. 113

**Enclosures** 

cc: file #R447

MDH/mdh

JH47

Chain of Custody

DAMES & MOORE

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

Number of Containers bed : Vine be-Sample Receipt Total no. of containers: Rec'd good condition/cold; Chain of custody seals: Conforms to record: Comments/ Instructions Lab number: (Date) 1/21/97 (8) **EP TOX Metals** (Printed) Kit Gardnon Metals (13) (Sig) Kit Garani Priority Pollutant **Analysis Request** (Company) HRE Received by (lab): (Time) 1500 (0808/809) (Date) (/21/9 HITCH Hydrocarbons 610/8310 Polycyclic Aromatic BTX 602/8015 625/8270 (GC/MS) Base/Neutral/Acids 602/8020 Relinquisbed by: Aromatic Volatiles (Company) 0108/109 Halogenated Volatiles (Printed) (Time)_ Volatile Organics 624/8240 (GC/MS) Matrix 7/05 708 Project Number: ODER - DS9 - 163
Project Manager: STEVE H 17CH | Jahoratony: AR | Time 02/11/7/11/2) 12H7 H25 HR Date Special Instructions/Comments: 42 Sampler's Initials: Laboratory: -Turn around time: -Sample ID 5A2 MCC SA MCC



### ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD

Sample No: Method Blank

Lab Sample ID: R447MB

LIMS ID: 97-776

Matrix: Soil

QC Report No: R447-Dames & Moore

Project:

00681-089-163

Date Sampled: NA Date Received: NA

Data Release Authorized:

Reported: 01/22/97

Date extracted: 01/21/97 Date analyzed: 01/22/97

Sample Amount: 30.0 g-dry-wt

Final Ext Vol: 10 mL

pH: NA

GPC Cleanup: No Florisil Cleanup:

Acid Cleanup: Yes

Sulfur Cleanup: Yes Conc/Dilution Factor: 1:1

Percent Moisture: NA

## Reported in Total ug/kg Dry Weight

CAS Number	Analyte	Value
12674-11-2	Aroclor 1016	33 t
53469-21-9	Aroclor 1242	33 t
12672-29-6	Aroclor 1248	33 T
11097-69-1	Aroclor 1254	33 T
11096-82-5	Aroclor 1260	33 T
11104-28-2	Aroclor 1221	67 t
11141-16-5	Aroclor 1232	33 U

## PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl Tetrachlorometaxylene 92.0%

- Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out. D
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank B
- Indicates compound was not analyzed. NA
- NR Indicates no recovery due to interferences.
- Indicates no value reportable see additional analyses. NV
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.



## ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD

Sample No: MCCSA1

Lab Sample ID: R447A

LIMS ID: 97-776

Matrix: Soil

QC Report No: R447-Dames & Moore

Project:

00681-089-163

Date Sampled: 01/21/97 Date Received: 01/21/97

Data Release Authorized:

Reported: 01/22/97

Date extracted: 01/21/97

Date analyzed: 01/22/97

Sample Amount: 29.8 g-dry-wt Final Ext Vol: 10 mL

> 6.0 pH:

GPC Cleanup: No Florisil Cleanup: No

Acid Cleanup: Yes

Sulfur Cleanup: Yes Conc/Dilution Factor: 1:1

Percent Moisture: 0.7 %

### Reported in Total ug/kg Dry Weight

CAS Number	Analyte	Value
12674-11-2	Aroclor 1016	34 U
53469-21-9	Aroclor 1242	34 U
12672-29-6	Aroclor 1248	34 U
11097-69-1	Aroclor 1254	34 U
11096-82-5	Aroclor 1260	21 J
11104-28-2	Aroclor 1221	67 U
11141-16-5	Aroclor 1232	34 U

## PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 89.0% Tetrachlorometaxylene 88.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- Found in associated method blank В
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Indicates no value reportable see additional analyses. NV
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.



# ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD

Sample No: MCCSA2

Lab Sample ID: R447B

LIMS ID: 97-777

Matrix: Soil

QC Report No: R447-Dames & Moore

Project:

00681-089-163

Date Sampled:

01/21/97

Date Received: 01/21/97

Data Release Authorized: Reported: 01/22/97

Date extracted: 01/21/97

Date analyzed: 01/22/97

Sample Amount: 29.8 g-dry-wt Final Ext Vol: 10 mL

pH: 7.0

GPC Cleanup: No Florisil Cleanup: No

Acid Cleanup: Yes

Sulfur Cleanup: Yes Conc/Dilution Factor: 1:1

Percent Moisture: 1.5 %

## Reported in Total ug/kg Dry Weight

CAS Number	Analyte	Value	
12674-11-2	Aroclor 1016	34 U	J
53469-21-9	Aroclor 1242	34 U	J
12672-29-6	Aroclor 1248	34 U	J
11097-69-1	Aroclor 1254	34 U	J
11096-82-5	Aroclor 1260	340	
11104-28-2	Aroclor 1221	67 U	ī
11141-16-5	Aroclor 1232	34 U	ſ

# PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 90.0% Tetrachlorometaxylene 87.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- NV Indicates no value reportable see additional analyses.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.



## ORGANICS ANALYSIS DATA SHEET PCB by METHOD 8080

Lab Sample ID: R447

LIMS ID: 97-776

Matrix: Soil

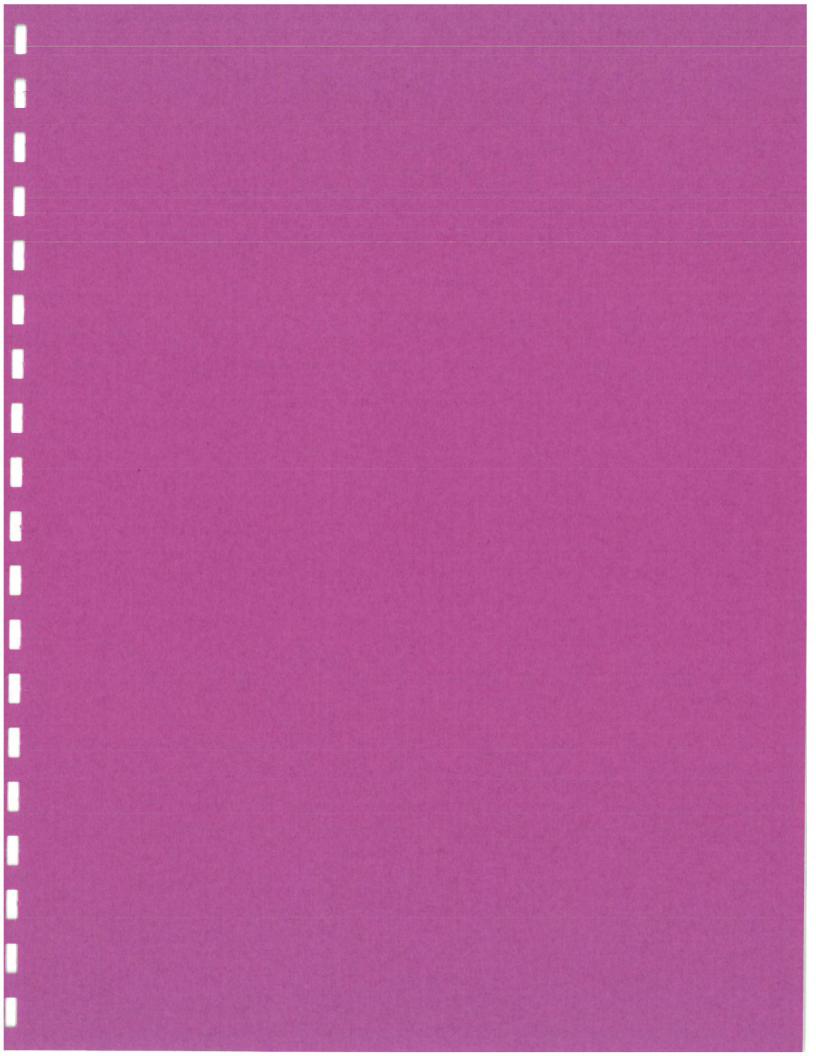
Data Release Authorized: Authorized: Reported: 01/22/97

QC Report No: R447-Dames & Moore

Project:

00681-089-163

LABORATORY CONTROL SAMPLE SPIKE RECOVERY


Date extracted: 01/21/97

SPIKE SPIKE CONSTITUENT FOUND ADDED RECOVERY LABORATORY CONTROL SAMPLE Aroclor 1242 252 333 75.6%

## Aroclor Surrogate Recoveries

Decachlorobiphenyl 79.0% Tetrachlorometaxylene 88.0%

Values Reported in Total ug/kg Dry Weight





11 March 1997

Steve Hitch
Dames & Moore
500 Market Place Tower
2025 First Avenue
Seattle, WA 98121



RE: Client Project: 00681-089-163 ARI Job #R821

Dear Steve:

Please find enclosed the original Chain-of-Custody (COC) record and final results for samples from the above referenced project. Three wipe samples were received in good condition on 3/4/97. The test for Sample MCC-Blank was canceled per Joanne Yan Gwo on 3/6/97. The remaining samples were analyzed for PCBs as requested.

There were no problems with these analyses. The units that were reported on the original faxed data to you were incorrect. They, and the corresponding reporting limits, have been corrected.

A copy of this package will be kept on file by ARI. Should you have any questions or problems, please feel free to call me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Mark D. Harris Project Manager

206/340-2866, ext. 113

**Enclosures** 

cc: file #R821

MDH/mdh

DAMES & MOORE

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

Chain of Custody

Number of Containers Chain of custody seals: Sample Receipt Total no. of containers: Rec'd good condition/cold: Conforms to record: Instructions Comments/ Lab number: (8) (Date)3 **EP TOX Metals** Priority Pollutant Metals (13) **Analysis Request** Received by (lab): (Pripred) (Company). (Date) 3/4/5 1 (Time) -≯(Sig) 0808/809 (Sig) growing your Care Pesticides/RCBs (Printed) Joanne Yan-Gwo (Company) Dames & Moore Hydrocarbons 610/8310 Polycyclic Aromatic BTX 602/8015 955/8270 (GCMS) Base/Neutral/Acids (Time) 15:40 Relinquished by: 602/8020 Aromatic Volatiles Halogenated Volatiles 601/8010 954/8540 (GC/WS) Volatile Organics 1547 WIPE Matrix Sampler's Signature: Godwar Upun Glub Project Number: 0068/-089-163 15-14 Time 15:05 1 11200k Project Manager: Steve Special Instructions/Comments: Date Sampler's Initials: JYG 3/4 3/4 3/4 Turn around time: -Laboratory: UW Rates MCC-BLANK Sample ID MCC-702 MCC-701

200



## ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD

Sample No: Method Blank

Lab Sample ID: R821MB

LIMS ID: 97-2945 Matrix: Wipes

QC Report No: R821-Dames & Moore

Project:

00681-089-163

Date Sampled: NA Bate Received!

Data Release Authorized:

Reported: 03/11/97

Date extracted: 03/05/97

Date analyzed: 03/06/97 Sample Amount: 1.00 Wipes

Final Ext Vol: 10 mL GPC Cleanup: No

Florisil Cleanup: No Sulfur Cleanup: No

Conc/Dilution Factor: 1:1

## Reported in Total ug/Sample

CAS Number	Analyte	Value
12674-11-2	Aroclor 1016	1.0 U
53469-21-9	Aroclor 1242	1.0 U
12672-29-6	Aroclor 1248	1.0 U
11097-69-1	Aroclor 1254	1.0 U
11096-82-5	Aroclor 1260	1.0 U
11104-28-2	Aroclor 1221	2.0 U
11141-16-5	Aroclor 1232	1.0 U

## PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 64.0% Tetrachlorometaxylene 77.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- Indicates compound was not analyzed. NA
- Indicates no recovery due to interferences. NR
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.



# ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD

Sample No: MCC-701

Lab Sample ID: R821A

LIMS ID: 97-2945 Matrix: Wipes QC Report No: R821-Dames & Moore

Project:

00681-089-163

Date Sampled:

03/04/97 03/04/97

Date Received:

Data Release Authorized: Reported: 03/11/97

Date extracted: 03/05/97 Date analyzed: 03/06/97 Sample Amount: 1.00 Wipes Final Ext Vol: 10 mL GPC Cleanup: No Florisil Cleanup: No Sulfur Cleanup: No Conc/Dilution Factor: 1:1

### Reported in Total ug/Sample

CAS Number	Analyte	Value
12674-11-2	Aroclor 101	6 1.0 U
53469-21-9	Aroclor 124	2 1.0 0
12672-29-6	Aroclor 124	8 1.0 0
11097-69-1	Aroclor 125	4 1.0 0
11096-82-5	Aroclor 126	0 1.0 0
11104-28-2	Aroclor 122	1 2.0 0
11141-16-5	Aroclor 123	2 1.0 0

#### PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 45.0% Tetrachlorometaxylene 55.0%

- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector.
  Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- B Found in associated method blank
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.
- Y Indicates a raised reporting limit due to matrix interferences.

  The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.



## ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD

Sample No: MCC-702

Lab Sample ID: R821B LIMS ID: 97-2946

Matrix: Wipes

QC Report No: R821-Dames & Moore

Project:

00681-089-163

Date Sampled: 03/04/97 Date Received: 03/04/97

Data Release Authorized: Reported: 03/11/97

Date extracted: 03/05/97 Date analyzed: 03/06/97 Sample Amount: 1.00 Wipes Final Ext Vol: 10 mL

GPC Cleanup: No Florisil Cleanup: No Sulfur Cleanup: No Conc/Dilution Factor: 1:1

## Reported in Total ug/Sample

CAS Number	Analyte		Value	
12674-11-2	Aroclor	1016	1.0	U
53469-21-9	Aroclor	1242	1.0	U
12672-29-6	Aroclor	1248	1.0	U
11097-69-1	Aroclor	1254	1.0	U
11096-82-5	Aroclor	1260	1.0	U
11104-28-2	Aroclor	1221	16.50	U
11141-16-5	Aroclor	1232		U

## PCB-Aroclor Surrogate Recovery

Decachlorobiphenyl 48.0% Tetrachlorometaxylene

- Indicates an estimated value when that result is less than the J calculated detection limit.
- Indicates a value above the linear range of the detector. E Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- U Indicates compound was analyzed for, but not detected at the given detection limit.
- В Found in associated method blank
- Indicates compound was not analyzed. NA
- NR Indicates no recovery due to interferences.
- Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.

# **APPENDIX C**

Terracon – PCB Soil and Concrete Remediation Specification, Section 02 84 50, Addendum 3 - December 10, 2015

North Campus Student Housing – McCarty Hall Replacement UW Project Number: 204350 Argus Pacific, Inc.

10 December 2015 - Addendum 3

Section 02 84 50
PCB SOIL AND CONCRETE
REMEDIATION
Page 1 of 11

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION OF WORK

- A. Contractor shall provide all labor, materials, account for coordination with Owner (UW), equipment, services, utility or power shutdowns, permits and insurance required to complete the handling, cleanup, removal, packaging, loading and proper disposal of PCB-contaminated concrete and soils as indicated below and on Figures 1 (attached to this section).
  - 1. Portions of the existing concrete slabs, walls and the soil below the concrete slabs are contaminated with PCBs in the following rooms:
    - a. North Tower, Ground Floor, room G056:
    - b. Central Tower, Ground floor, room G046B, portions of room G046 adjacent to room G046B, and northwest corner of room G046A:
    - c. South Tower, Ground Floor, room G021:
  - The attached Figure 1 shows the approximate extent of PCB contamination in the rooms/areas listed above.
  - 3. The PCB site assessment report will be issued prior to notice to proceed.
  - 4. PCB concentrations in the concrete and soil under the slabs in the electrical transformer rooms and surrounding the Central electrical transformer room are between 2 ppm and 50 ppm as indicated in the specific areas shown on Figure. Concrete floor slabs are approximately four to six (4-6) inches in thickness.
  - 5. PCB contaminated soils are anticipated to exist to approximately 24 inches below the underside of the concrete slab floor of the transformer rooms as indicated in specific areas shown on Figure 1 (attached to this section).
  - 6. PCB concentrations in concrete located beyond the remediation zones indicated on Figure 1 contain <2 ppm PCBs and are considered "construction debris".
  - 7. Previous remediation included either cleaning, removal of the top 1/8" of concrete, followed by encapsulation, or complete slab removal. Based on past remediation, exposed concrete surfaces in the work areas are not considered PCB-containing.
  - 8. Access to PCB work areas is limited related to overhead construction, structural elements, mechanical systems and lay-down areas.
  - 9. Coordinate PCB remediation work with demolition specified elsewhere and protection of PCB remediation areas during such demolition.
  - 10. Coordinate the Work with waste profiling and confirmation soil sampling to be performed by the Owner's Environmental Consultant as outlined below. Waste will require staging for specific periods to facilitate waste profiling (if required). Remediation areas will require protection for specific periods outlined below to facilitate confirmation sampling of remaining soils.
  - 11. Additional excavation or removal may be required contingent upon confirmation sample data. Any work in addition to that specified herein will be performed as a change to the contract at a cost mutually negotiated by the Owner and Contractor.
  - 12. Based on available hydro-geological data, it is not anticipated that groundwater will be encountered or affected by PCB-related work.

Argus Pacific, Inc.

10 December 2015 - Addendum 3

Section 02 84 50
PCB SOIL AND CONCRETE
REMEDIATION
Page 2 of 11

- B. Remove, load in UW-approved containers to be provided by the Contractor, transport and properly dispose of approximately twenty one (21) tons of PCB-contaminated concrete and soil containing >2 ppm PCBs and <50 ppm PCBs (i.e. "State Special Waste") from rooms/areas listed above and as indicated on Figure 1 at the end of the section. Dispose of "State Special Waste" at a UW-approved "Subtitle D" landfill permitted to accept such waste. Refer to Section 3.3 for information on disposal requirements.
  - 1. Included in the scope of remediation of materials containing ≥>2 ppm PCBs and <50 ppm PCBs are the following items:
    - Concrete floor slabs measuring approximately 50 square feet in the South tower and
       25 square feet in the North tower, for a total of 75 square feet;
    - Base of concrete masonry unit (CMU) walls (from floor to 12 inches above floor) measuring approximately 15 linear feet in the Central tower, 4 linear feet in the North tower and 7 linear feet in the South tower, for a total of 26 linear feet of wall;
    - c. Underlying soil beneath slabs in the Central tower (approximately 7 cubic yards) and North tower (approximately 5 cubic yards) totaling approximately 16 tons/ 12 cubic yards.
- C. Remove, load in containers to be provided by the Contractor, transport and properly dispose of concrete and soil containing <2 ppm PCBs (i.e. "Construction Debris") from rooms/areas listed above and as indicated on Figure 1 at the end of the section. Dispose of "Construction Debris" at a municipal landfill permitted to accept such waste. Refer to Section 3.3 for information on disposal requirements</p>

#### 1.2 RELATED SECTIONS

- A. Work related to this Section is described in:
  - 1. Section 01 11 01 Summary of Work Regulated Materials
  - 2. Section 02 80 00 Facility Remediation
  - 3. Section 02 82 00 Asbestos Removal
  - 4. Section 02 83 00 Heavy Metals Control Activities
  - 5. Section 02 84 00 Polychlorinated Biphenyl Remediation

#### 1.3 DEFINITIONS

- A. Authorized Visitor: The Owner or designated representative, or a representative of any regulatory or other agency having jurisdiction over the project, and having required training, medical approval, fit test, etc.
- B. Controlled Area: Area that only qualified and properly protected workers or authorized visitors has access.
- C. Decontamination Area: Enclosed area adjacent and connected to controlled/regulated work area, consisting of an equipment room and clean room, which is used to decontaminate workers, materials, and equipment. Where PCB removal is done in conjunction with asbestos or lead abatement, the decontamination area for asbestos or lead may be used for this purpose.

Argus Pacific, Inc.

10 December 2015 - Addendum 3

Section 02 84 50
PCB SOIL AND CONCRETE
REMEDIATION
Page 3 of 11

- D. Disposal: Procedures necessary to transport and deposit the PCB materials in an approved waste disposal site in compliance with EPA and other applicable regulations. Disposal Site shall be an Owner approved and designated landfill, incinerator or recycling company for PCB-containing waste.
- E. Owner's Environmental Consultant: Argus Pacific, Inc., 1900 W. Nickerson St., Ste 315, Seattle, WA 98119.
- F. MSDS: Material Safety Data Sheet supplied by manufacturer provides information on a product listed in OSHA 29 CFR 1910.1200(g)(2).
- G. Polychlorinated Biphenyls (PCBs): A class of chlorinated hydrocarbon compounds containing a variable number of chlorine atoms. Commercially available products contain mixtures of as many as 40 to 70 PCB compounds (isomers). A compound containing more than 2 ppm of PCBs is considered to be PCB-containing. PCBs range from oily liquids to white, crystalline solids to hard, non-crystalline resins or waxy solids.
- H. Waste Shipment Records: Form similar to *Uniform Hazardous Waste Manifest*, or an EPA approved state form.

## 1.4 DOCUMENTS INCORPORATED BY REFERENCE

- A. The current issue of each document shall govern. Where conflict among requirements or with these Specifications exists, the most stringent requirements shall apply.
  - 1. U.S Environmental Protection Agency Toxic Substance Control Act, TSCA, (Code of Federal Regulations Title 40, Part 761)
  - 2. U.S Environmental Protection Agency Office of Toxic Substances Guidance Document, *Summary of PCB Regulations*, EPA Document No. 910-S-94-002.
  - 3. U.S. Department of Labor, Occupational Safety and Health Administration (OSHA, 40 CFR 1910.120.
  - 4. RCRA, Resource Conservation and Recovery Act, 40 CFR Part 761, Subpart D.
  - Washington State Department of Ecology, Dangerous Waste Regulations, Chapter 173-303 WAC
  - 6. CERCLA, Comprehensive Environmental Response, Compensation, and Liability Act (42 U.S.C. 9601 et.seq.)
  - 7. MTCA, Model Toxics Control Act, Chapter 70.105 D RCW
  - 8. MTCA Cleanup Regulation, Chapter 173-340 WAC
  - 9. Dangerous Waste Regulations, Chapter 173-303 WAC
  - 10. Federal and State DOT regulations governing transport of PCB-contaminated media.
  - 11. Washington Industrial Safety and Health Act (WISHA)
  - 12. All local ordinances, regulations, or rules pertaining to contaminated soil or groundwater, including storage, transportation, and disposal.

Argus Pacific, Inc.

10 December 2015 - Addendum 3

Section 02 84 50
PCB SOIL AND CONCRETE
REMEDIATION
Page 4 of 11

#### 1.5 SUBMITTALS AND NOTICES

- A. Submit "Pre-Job Submittals" to the Owner 10 working days prior to notice to proceed. The Work may not proceed until the complete pre-job submittal package has been reviewed by the Owner and Environmental Consultant.
  - Site Specific Health and Safety Plan (HASP): Prepare a project HASP developed and implemented in association with the Contractor's standard construction safety program and certified by a Certified Industrial Hygienist (CIH) in good standing. HASP will comply with all aspects of WAC 296-843-120 (Health and Safety Plan), and will include information specific to worker training, protection and decontamination related to PCB contamination. HASP is to be distributed to all on-site employees performing work in the vicinity of PCB-contaminated media, who are to read it or have it read to them if they are unable to read it themselves, sign a compliance agreement and abide by all of its provisions. The HASP shall address safe and proper handling of contaminated soils and concrete. HASP shall include procedures to address groundwater, which is not anticipated, and surface water runoff/rain.
  - 2. HASP shall include at a minimum the following items:
    - a. Name, signature and stamp of Certified Industrial Hygienist
    - b. Name and signature of Contractor's designated Safety Representative
    - c. Site description and location;
    - d. Site Control measures as identified on a site map;
    - e. Pre-entry briefings to be held prior to initiating any work in areas of known contamination, and at other times to ensure that workers are appraised of HASP provisions and that such a plan is adequate and being followed;
    - f. Chemical hazard analysis to identify and establish appropriate procedures for addressing suspected conditions or activities that may pose routine occupational hazards or immediate danger. The HASP shall describe the risks associated with each task and the actions to be taken to mitigate hazards;
    - g. Contaminated Media Zones, including exclusion and support zones. Describe procedures to inform all necessary personnel of Contaminated Media Zone requirements. Include specific criteria and contaminant thresholds for establishing Contaminated Media Zone(s);
    - Levels of personnel protection to be employed during the Work, including, but not limited to: thresholds and criteria for choices of protective clothing, equipment and respiratory protection (as appropriate) based on the types and concentrations of contaminants and anticipated exposure pathways;
    - i. A program for the determination of personnel exposure monitoring requirements as needed, listing target contaminants and associated monitoring equipment;
    - j. Decontamination procedures for personnel, materials and equipment. Include description and general locations of decontamination facilities;
    - Description of the equipment and procedures to prevent releases of contaminated media to the soil and water from construction equipment and materials. Include description of equipment and procedures to be used to immediately clean up and contain releases;

North Campus Student Housing – McCarty Hall Replacement

UW Project Number: 204350

Argus Pacific, Inc.

10 December 2015 – Addendum 3

Section 02 84 50
PCB SOIL AND CONCRETE
REMEDIATION
Page 5 of 11

I. Procedures and coordination of temporary storage, containerization, handling and disposal of any contaminated media in accordance with this Specification and all applicable local, State and Federal regulations.

- m. Emergency Response Plan for safe and effective response to emergencies which establishes emergency procedures including, but not limited to: escape routes, signals for evacuation, emergency communications, and response to fire or explosions. Describe emergency equipment and facilities available off-site;
- n. Definition of appropriate levels of training and training procedures to promote a safe working environment, including any training requirements defined by applicable regulations or codes;
- o. Medical surveillance program for eligible employees consistent with 29 CFR 1926.65(f).
- 3. Contaminated Media Management Plan (CMMP): Provide a CMMP specific to the project site which includes a detailed description of the location, amount and types of media to be remediated, and the means and methods, and estimated duration(s), of the planned remediation work. Include the solid waste disposal facility where contaminated media will be disposed of, and the offsite haul routes used to transport contaminated media to the facility. Include proposed locations for temporary storage of waste containers as specified. Discuss coordination with demolition as specified elsewhere. All proposed changes, deletions or addition to the CMMP shall be submitted to the Owner and Environmental Consultant prior to implementation.

#### B. Periodic Job Submittals:

- Daily Logs: Submit daily logs to the Owner and Environmental Consultant prior to the start of the next work shift. Daily logs shall indicate the names and times of all Contractor personnel at the project site, including delivery personnel and authorized visitors to the project site. Indicate the location and depth of all contaminated media excavation, estimated in-place volumes (cubic yards) of contaminated soils excavated, locations of any temporary contaminated media stockpiles, the volume of contaminated media placed in or removed from each stockpile, and the locations, depth and nature of any unanticipated contaminated media encountered or observed and the response taken by the Contractor.
- 2. Contaminated Media Documentation: Use a bill of lading for each offsite shipment of contaminated media within the Contractor's scope of disposal. Bill of lading shall include the date and time of shipment, name of transport company, name of driver, disposal site, location from which contaminated media was loaded on truck, waste profile permit number from disposal/treatment facility, and brief description of contaminated media. Contractor is to confirm that each bill of lading has correct waste profile permit indicated prior to shipment leaving the site. Provide bills of lading and associated weight ticket from disposal facility showing weight/volume of contaminated media received to the Owner and Environmental Consultant within 24 hours of shipment from the project site.
- C. Post-Job Submittals shall be delivered to the Owner within 30 days of completion of work and shall include the following:
  - 1. Certification: Provide written certification from the Contractor's Project Manager or Supervisor that Contractor has fully inspected the work area and completed work in strict accordance with the Specifications.

Argus Pacific, Inc.

10 December 2015 - Addendum 3

Section 02 84 50
PCB SOIL AND CONCRETE
REMEDIATION
Page 6 of 11

- 2. Project Record Documents: Provide project records including documentation of all contract changes, and copies of worksite entry log books, safety logs, sign-in sheets, and supervisor's daily field reports.
- 3. Disposal Manifests: Compile and submit copies of ALL waste disposal transportation and disposal manifests for "State Special Waste", including signed receipts from the landfill, and chain-of-custody.
- D. The UW EHS will provide the proper notification to EPA regarding PCB activity and waste disposal as required.
- E. Refer to EPA, OSHA, and other standards referenced herein for further information and regulatory requirements not included above.

#### 1.6 PERSONAL PROTECTION AND TRAINING

- A. Personnel Protective Equipment for PCB Removal, shall include, but not limited to:
  - 1. PCB-resistant gloves and clothing, eye, hearing, head and fall protection as necessary.
  - 2. Half-face mask, negative-pressure respirator with disposable particulate filtration cartridge (P-100). Protection factor: 10
  - 3. Provide additional personnel and respiratory protection to minimize any possible exposure from inhalation. Refer to below testing limits for all worker exposure requirements for PCBs.

## B. Worker Decontamination Area

- Where PCB remediation is performed in conjunction with asbestos, lead abatement or other hazardous materials abatement, a multiple use decontamination area shall be established.
- 2. The Contractor shall provide a decontamination/emergency clean up area consisting of PCB-resistant sheeting (drop cloth) with absorbent material and other necessary equipment. Washing facilities with hot water and cleanser that is capable of removing oily compounds without injury to human skin.
- C. Worker Safety and Health: The Contractor shall comply with the following provisions:
  - The content of WAC 173-340-810 (Model Toxics Control Act Cleanup Regulation, Worker Safety and Health). WAC 173-340-810 states the requirements under the Occupational and Safety Health Act (OSHA) and the Washington Industrial Safety and Health Act (WISHA) are applicable to the excavation and handling of contaminated soil/groundwater.
  - 2. The Contractor performing excavation and loading of contaminated soil/groundwater shall prepare a site-specific Health and Safety Plan that addresses the presence of the contaminants described in this specification. Refer to Section 1.5 SUBMITTALS AND NOTICES in this Specification.
  - 3. Workers involved in excavation and handling of contaminated soil and concrete shall be in compliance with Hazardous Waste Operations and Emergency Response (HAZWOPER) Training in accordance with WAC 296-62. Workers shall be trained in the purpose, proper selection, fitting, use, and limitations of personal protective equipment (PPE), including gloves, protective clothing and respirators.

North Campus Student Housing – McCarty Hall Replacement UW Project Number: 204350 Argus Pacific, Inc.
10 December 2015 – Addendum 3

Section 02 84 50
PCB SOIL AND CONCRETE
REMEDIATION
Page 7 of 11

#### 1.7 SAFETY

A. With regard to the Work of this contract, the safety of the Contractor's employees, the Owner's employees, and the public is the sole responsibility of the Contractor.

#### 1.8 LIABILITY

A. The Contractor is an independent contractor and not an employee of the Owner, Architect or Environmental Consultant. The Owner, Architect and the Environmental Consultant shall have no liability to the contractor or any third persons for the Contractor's failure to faithfully perform and follow the provisions of these Specifications and the requirements of the governing agencies. Notwithstanding the failure of the Owner, Architect or the Environmental Consultant to discover a violation by the Contractor of any of the provisions of these Specifications, or to require the Contractor to fully perform and follow any of them, such failure shall not constitute a waiver of any of the requirements of these Specifications which shall remain fully binding upon the Contractor.

#### 1.9 QUALITY ASSURANCE

- A. Environmental Consultant may perform periodic inspections to observe work, handling and packaging procedures. Environmental Consultant may perform surface wipe, bulk and air testing for PCBs to determine possible contamination and environmental exposure, and verify that PCB levels are not exceeded.
- B. The Owner shall notify the Contractor in writing to stop work if the Owner determines that work practices are in violation of the Specifications or work is endangering workers and occupants of the building. The Contractor shall continue work when conditions and actions are corrected and when written authorization is received from the Owner.

### C. Waste Profiling

- 1. The waste profiles will be based on initial results of in-situ sampling conducted by the Environmental Consultant, reviewed and approved by UW EH&S. If new/unidentified areas are identified during removal the Environmental Consultant will collect samples of suspected PCB-contaminated material during excavation for use in completion of additional required waste profiles. Such sampling will be performed on an as-needed basis at the sole discretion of the Environmental Consultant and Owner. Coordinate with the Owner and Environmental Consultant to facilitate sample collection.
- 2. Stage new/unidentified containerized waste on-site for up to ten (10) working days pending waste profile approval.
- 3. Final waste characterization will be provided by Owner and Environmental Consultant as part of the EPA-approved work plan.

## D. Confirmation Sampling

- 1. Environmental Consultant will collect samples of in-situ soils and concrete following excavation/removal to determine completeness of remediation in accordance with the EPA-approved wok plan. Coordinate with the Owner and Environmental Consultant 24 hours prior to completion to facilitate confirmation sample collection.
- 2. Restrict access to PCB work areas for up to three (3) working days following sample collection to facilitate analysis and review of data. Do not impact PCB work areas in any manner until written direction is provided by the Owner/Environmental Consultant.

Argus Pacific, Inc.

10 December 2015 - Addendum 3

Section 02 84 50
PCB SOIL AND CONCRETE
REMEDIATION
Page 8 of 11

3. Additional excavation or removal may be required contingent upon confirmation sample data. Any work in addition to that specified herein will be performed as a change to the contract at a cost to be mutually negotiated by the Owner and Contractor.

#### 1.10 TESTING LIMITS

- A. PCB levels for airborne, cleanup and hazardous waste disposal are as follows:
  - Worker airborne concentrations below 1 ug/m³ (microgram per cubic meter) or preabatement background levels, where available.
  - 2. Concentrations below 2 parts per million for general construction solid waste disposal.
  - 3. Concentrations below 1 part per million for cleanup of contaminated soils per Table 740-1, WAC 173-340-900.

#### PART 2 - PRODUCTS

- 2.1 Plastic Sheet: Plastic sheeting shall be flame-retardant polyethylene material. It shall not dissolve on contact with PCB compounds or any chemicals used by the contractor for abatement/decontamination. The minimum thickness shall be 6-mil.
- 2.2 Storage Containers: Storage containers shall be suitable to receive and retain any PCB-containing or contaminated materials until disposal at an approved site. They shall comply with container specifications set forth in 49 CFR 178.80, 178.82, 178.102 or 178.116. Containers shall be labeled with waterproof print and permanent adhesive in accordance with WAC, OSHA, DOT, UN and EPA regulations.
- 2.3 Warning labels on all disposal containers/drums shall be according to EPA Region 10 Toxic Substance Section, PCB Regulation. The Contractor will provide waste containers and labels for all waste materials.
- 2.4 Warning Signs: Unless other signs or security access is provided, and for temporary measure, warning signs shall be provided and displayed at each regulated area during Work to warn of the presence of PCBs. Upon completion of cleanup and clearance, these barriers and warning signs shall be removed.
- 2.5 Cleaning detergent or degreaser: Owner approved product Simple Green Industrial Cleaners and Degreasers (biodegradable) or TSP solution to remove staining on concrete substrate and electrical equipment. Provide in the submittal package all MSDS for products to be used to complete the project.
- 2.6 All Necessary tools and equipment to complete the remediation and cleanup efforts

#### PART 3 - EXCECUTION

#### 3.1 WORK AREA PREPARATION

A. Utility Locate: Schedule a utility locate of the project areas a minimum of 48 hours in advance of planned site work.

Argus Pacific, Inc.

10 December 2015 - Addendum 3

Section 02 84 50
PCB SOIL AND CONCRETE
REMEDIATION
Page 9 of 11

- B. Controlled Area and Decontamination Facilities: Before beginning excavation of contaminated media, establish a controlled area around the planned excavation. Establish and demarcate entry/exit locations and describe them in HASP and CMMP outlined above.
  - 1. Equipment may move freely within Controlled Area.
  - 2. Decontamination is not required for movement within Controlled Area.
  - 3. Decontamination prior to exiting controlled area shall consist of brooming away loose soil and removal of any significant quantities of adhered soil with hand tools.
  - 4. As feasible, locate truck loading areas at a perimeter of Controlled Area. Broom-clean trucks before leaving loading area.
  - 5. Personnel exiting controlled area shall decontaminate per HASP.
- C. Temporary Protection: The Contractor shall install adequate protection to prevent damage to concrete and soil to be removed during any demolition or other site operations to occur prior to remediation. Such measures shall be adequate to enable removal of any debris or material that may be stockpiled on the remediation zone without impacting existing concrete or soil to be remediated. Coordinate temporary measures with demolition specified elsewhere or required to facilitate the Work.
- D. Temporary Staging Areas: Establish facilities for temporary staging of excavated media pending testing of concrete and/or soils prior to transport for disposal/treatment. Install runoff control measures per CMMP.
- E. Access to Work Area by Others: Except for emergency personnel, the Contractor shall limit access to the Controlled Area to authorized visitors.
- F. Personnel Protection: Ensure proper eyewear, gloves, boots and any other required safety equipment per the Site Specific HASP are in use at all times.
- G. Emergency Precautions
  - 1. First Aid: The Contractor shall be prepared to administer first aid to injured personnel after decontamination.
  - 2. Contractor shall provide fire extinguishers at project work area.

#### 3.2 REMOVAL OF PCB-CONTAMINATED MEDIA

- A. Remove contaminated concrete using means and methods as described in the CMMP and HASP required above. Minimize slurry runoff and distribution of debris.
- B. Excavate contaminated soils in a manner that prevents commingling with uncontaminated soil. Minimize movement of excavation equipment over or through contaminated soil to prevent commingling.
- C. Maintain excavation equipment in good working order. Prevent spillage of oil, fuel or hazardous substances from equipment and maintain an appropriately sized spill kit at the site. Promptly repair oil leaks from equipment and clean up any contaminated media.
- D. Obtain coverage under the Construction Stormwater General Permit and conform to all requirements.

Argus Pacific, Inc.

10 December 2015 - Addendum 3

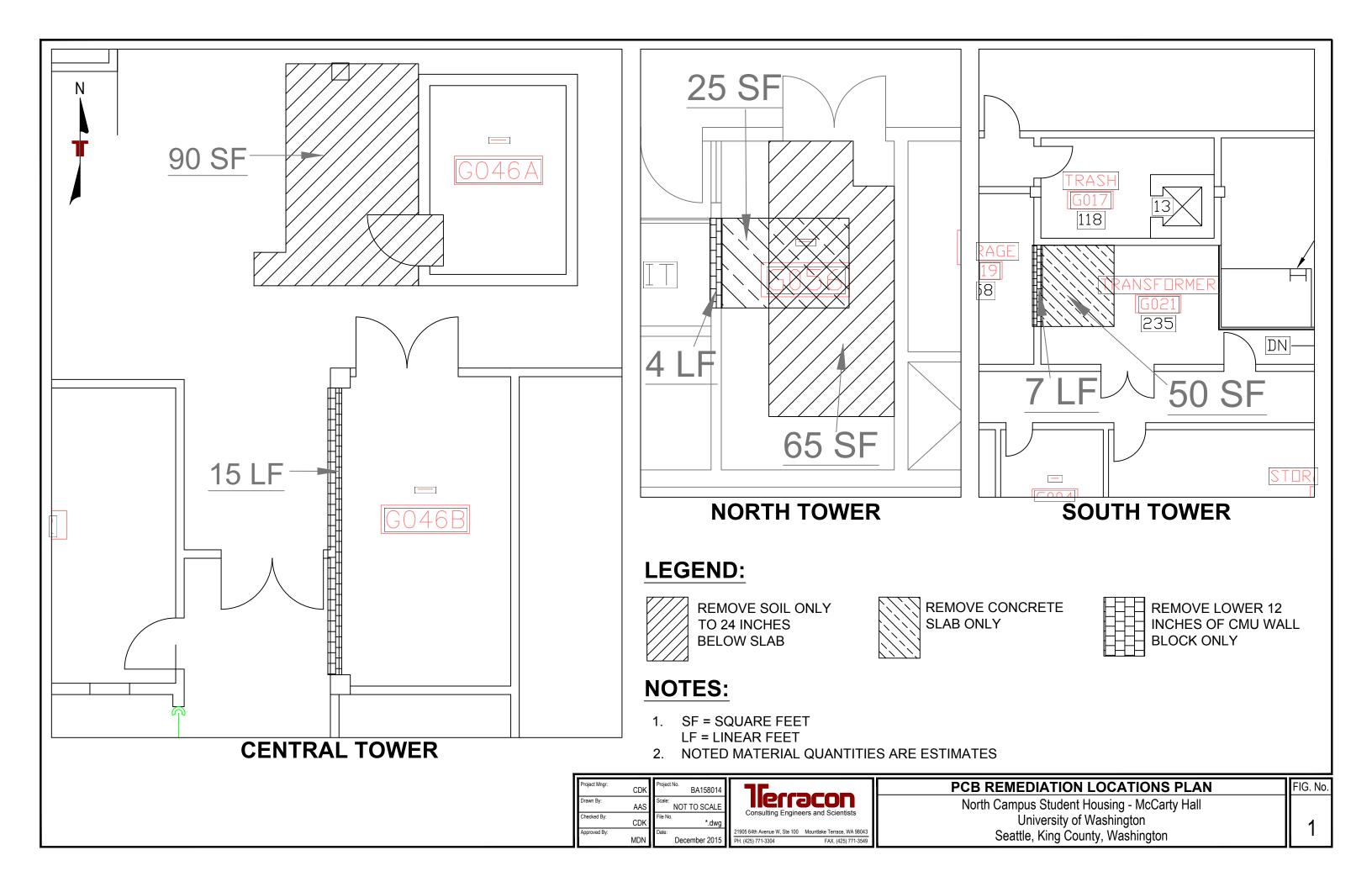
Section 02 84 50
PCB SOIL AND CONCRETE
REMEDIATION
Page 10 of 11

- E. Load contaminated soils within controlled area into containers to be provided by the Contractor. Refer to staging requirements and holding times for waste profiling as outlined above.
- F. Load contaminated soil into trucks or containers in a manner that prevents spilling or tracking of contaminated soils into non-contaminated areas. Do not store contaminated soil in drums.
- G. Remove loose material from trucks or containers before trucks leave loading areas. Broom trucks clean before they leave the loading areas. Any contaminated soil collected in loading areas shall either be placed into trucks or back onto stockpile(s).
- H. Cover all trucks or containers prior to leaving loading areas. Do not spill or track contaminated media offsite at any time.
- Utilize pre-approved or designated truck routes established in conjunction with other Work to be performed under the Contract Documents.
- J. Ensure loaded truck or containers weights are within acceptable limits.
- K. Comply with all applicable local, State, or Federal Regulations, codes or ordinances governing or regulating transportation of contaminated substances.
- L. Ensure that all drivers of vehicles transporting contaminated substances have in their possession during transport all applicable Washington State and local vehicle insurance requirements, valid commercial driver's license, and vehicle registration and license.
- M. Ensure all drivers of transport vehicles are informed of the nature of material being transported in form of written manifest and required haul routes to and from off-site disposal facility.
- N. Trucks or containers shall be substance-compatible, licensed and permitted pursuant to Federal, State and local requirements for transportation of contaminated media.

## 3.3 DISPOSAL

- A. Waste containers are to be temporarily stored on site pending collection and analysis of both profiling and post-remediation soil and concrete samples.
  - 1. Store Containers for all waste on-site following loading for up to ten (10) working days to facilitate waste profile sampling (if required). Storage of containers are to be properly sealed, secured, demarcated and protected from weather.
- B. The Owner (UW EH&S) and the Environmental Consultant shall determine current waste handling, transportation, and disposal regulations for the work site and for waste disposal. The Owner's Environmental Consultant in conjunction with UW protocols shall perform testing to designate the waste stream. Refer to requirements outlined under Item 1.10 Testing Limits.
- C. Contractor shall containerize Special Regulated Waste ("State Special Waste"): Waste containing >2 ppm and <50 ppm in Owner-approved, Contractor-provided and properly sealed and labeled containers is to be transported and disposed of by the Contractor at a University-approved Subtitle D landfill in accordance with all applicable local and State regulations. A list of such facilities approved by the University to accept such waste is available at: http://www.ehs.washington.edu/epowaste/disposalfaclist.pdf.

North Campus Student Housing – McCarty Hall Replacement UW Project Number: 204350 Argus Pacific, Inc.
10 December 2015 – Addendum 3


Section 02 84 50
PCB SOIL AND CONCRETE
REMEDIATION
Page 11 of 11

- "State Special Waste" transport does not require approval/signature of shipping papers by UW EH&S prior to removal from the project site, but please notify UW EH&S prior to all shipments.
- D. Construction Debris containing PCBs (less than 2 ppm): Construction and demolition debris containing less than 2 ppm PCBs generated from the project site is to be transported and disposed of by the Contractor as "Construction Debris". Ensure proper packaging and labeling relative to PCB content and Asbestos content as applicable. Refer to Sections 02 80 00, 02 82 00 and the HM-Series Drawings for additional information.

## PART 4 - FIGURES

4.1 See the following figure (Figure 1) for approximate extent and location of PCB contamination in concrete and soil.

**END OF SECTION** 

